OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 17 — Aug. 26, 2013
  • pp: 20470–20483

Collective localized surface plasmons for high performance fluorescence biosensing

Martin Bauch and Jakub Dostalek  »View Author Affiliations

Optics Express, Vol. 21, Issue 17, pp. 20470-20483 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2096 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Metallic nanostructures supporting collective localized surface plasmons (cLSPs) are investigated for the amplification of signal in fluorescence biosensors. cLSPs modes are supported by diffractive arrays of metallic nanoparticles that are embedded in a refractive index-symmetrical environment. They exhibit lower damping and thus their excitation is associated with higher field intensity enhancement and narrower resonance than that for regular localized surface plasmons. Through finite difference time domain (FDTD) simulations, we designed a novel cLSP structure that exhibit two resonances overlapping with absorption and emission wavelengths of assumed fluorophore (similar to Cy5 or Alexa Fluor 647). The simulations of surface plasmon-enhanced fluorescence (PEF) took into account the cLSP-driven excitation, directional emission, and mediated quantum yield in realistic sandwich immunoassays that utilize fluorophore-labeled detection antibodies. Achieved results indicate that cLSP-based structures holds potential for extraordinarily high fluorescence intensity enhancement that exceeds a value of 103.

© 2013 OSA

OCIS Codes
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(240.6680) Optics at surfaces : Surface plasmons
(280.1415) Remote sensing and sensors : Biological sensing and sensors
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:

Original Manuscript: June 10, 2013
Revised Manuscript: August 7, 2013
Manuscript Accepted: August 13, 2013
Published: August 23, 2013

Virtual Issues
Vol. 8, Iss. 9 Virtual Journal for Biomedical Optics

Martin Bauch and Jakub Dostalek, "Collective localized surface plasmons for high performance fluorescence biosensing," Opt. Express 21, 20470-20483 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Höppener and L. Novotny, “Exploiting the light-metal interaction for biomolecular sensing and imaging,” Q. Rev. Biophys.45(2), 209–255 (2012). [CrossRef] [PubMed]
  2. S. Lal, N. K. Grady, J. Kundu, C. S. Levin, J. B. Lassiter, and N. J. Halas, “Tailoring plasmonic substrates for surface enhanced spectroscopies,” Chem. Soc. Rev.37(5), 898–911 (2008). [CrossRef] [PubMed]
  3. B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today15(1-2), 16–25 (2012). [CrossRef]
  4. J. Dostálek and W. Knoll, “Biosensors based on surface plasmon-enhanced fluorescence spectroscopy,” Biointerphases3(3), FD12–FD22 (2008). [CrossRef] [PubMed]
  5. K. Aslan, J. Huang, G. M. Wilson, and C. D. Geddes, “Metal-enhanced fluorescence-based RNA sensing,” J. Am. Chem. Soc.128(13), 4206–4207 (2006). [CrossRef] [PubMed]
  6. Y. Wang, A. Brunsen, U. Jonas, J. Dostálek, and W. Knoll, “Prostate specific antigen biosensor based on long range surface plasmon-enhanced fluorescence spectroscopy and dextran hydrogel binding matrix,” Anal. Chem.81(23), 9625–9632 (2009). [CrossRef] [PubMed]
  7. C. J. Huang, J. Dostalek, and W. Knoll, “Long range surface plasmon and hydrogel optical waveguide field-enhanced fluorescence biosensor with 3D hydrogel binding matrix: On the role of diffusion mass transfer,” Biosens. Bioelectron.26(4), 1425–1431 (2010). [CrossRef] [PubMed]
  8. L. Touahir, E. Galopin, R. Boukherroub, A. C. Gouget-Laemmel, J. N. Chazalviel, F. Ozanam, and S. Szunerits, “Localized surface plasmon-enhanced fluorescence spectroscopy for highly-sensitive real-time detection of DNA hybridization,” Biosens. Bioelectron.25(12), 2579–2585 (2010). [CrossRef] [PubMed]
  9. K. Tawa, H. Hori, K. Kintaka, K. Kiyosue, Y. Tatsu, and J. Nishii, “Optical microscopic observation of fluorescence enhanced by grating-coupled surface plasmon resonance,” Opt. Express16(13), 9781–9790 (2008). [CrossRef] [PubMed]
  10. H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations,” Nano Lett.11(2), 637–644 (2011). [CrossRef] [PubMed]
  11. X. Q. Cui, K. Tawa, K. Kintaka, and J. Nishii, “Enhanced fluorescence microscopic imaging by plasmonic nanostructures: From a 1D grating to a 2D nanohole array,” Adv. Funct. Mater.20(6), 945–950 (2010). [CrossRef]
  12. A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009). [CrossRef]
  13. Y. Z. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett.93(18), 181108 (2008). [CrossRef]
  14. B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett.84(20), 4721–4724 (2000). [CrossRef] [PubMed]
  15. G. Vecchi, V. Giannini, and J. Gómez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B80(20), 201401 (2009). [CrossRef]
  16. B. Auguié, X. M. Bendaña, W. L. Barnes, and F. J. García de Abajo, “Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate,” Phys. Rev. B82(15), 155447 (2010). [CrossRef]
  17. G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett.102(14), 146807 (2009). [CrossRef] [PubMed]
  18. M. H. Chowdhury, J. Pond, S. K. Gray, and J. R. Lakowicz, “Systematic computational study of the effect of silver nanoparticle dimers on the coupled emission from nearby fluorophores,” J. Phys. Chem. C112(30), 11236–11249 (2008). [CrossRef] [PubMed]
  19. P. Bharadwaj and L. Novotny, “Spectral dependence of single molecule fluorescence enhancement,” Opt. Express15(21), 14266–14274 (2007). [CrossRef] [PubMed]
  20. M. Slootsky and S. R. Forrest, “Full-wave simulation of enhanced outcoupling of organic light-emitting devices with an embedded low-index grid,” Appl. Phys. Lett.94(16), 163302 (2009). [CrossRef]
  21. G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep.113(4), 195–287 (1984). [CrossRef]
  22. P. B. Johnson and R. W. Christy, “Optical-constants of noble-metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  23. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon.1(3), 438–483 (2009). [CrossRef]
  24. T. Jøssang, J. Feder, and E. Rosenqvist, “Photon correlation spectroscopy of human IgG,” J. Protein Chem.7(2), 165–171 (1988). [CrossRef] [PubMed]
  25. W. Zhou and T. W. Odom, “Tunable subradiant lattice plasmons by out-of-plane dipolar interactions,” Nat. Nanotechnol.6(7), 423–427 (2011). [CrossRef] [PubMed]
  26. A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Controlling the interaction between localized and delocalized surface plasmon modes: experiment and numerical calculations,” Phys. Rev. B74(15), 155435 (2006). [CrossRef]
  27. N. Papanikolaou, “Optical properties of metallic nanoparticle arrays on a thin metallic film,” Phys. Rev. B75(23), 235426 (2007). [CrossRef]
  28. Y. Z. Chu and K. B. Crozier, “Experimental study of the interaction between localized and propagating surface plasmons,” Opt. Lett.34(3), 244–246 (2009). [CrossRef] [PubMed]
  29. M. T. Zin, K. Leong, N. Y. Wong, H. Ma, M. Sarikaya, and A. K. Y. Jen, “Surface-plasmon-enhanced fluorescence from periodic quantum dot arrays through distance control using biomolecular linkers,” Nanotechnology20(1), 015305 (2009). [CrossRef] [PubMed]
  30. T. Ruckstuhl, M. Rankl, and S. Seeger, “Highly sensitive biosensing using a supercritical angle fluorescence (SAF) instrument,” Biosens. Bioelectron.18(9), 1193–1199 (2003). [CrossRef] [PubMed]
  31. T. Ruckstuhl and D. Verdes, “Supercritical angle fluorescence (SAF) microscopy,” Opt. Express12(18), 4246–4254 (2004). [CrossRef] [PubMed]
  32. L. Feuz, P. Jönsson, M. P. Jonsson, and F. Höök, “Improving the limit of detection of nanoscale sensors by directed binding to high-sensitivity areas,” ACS Nano4(4), 2167–2177 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited