OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 17 — Aug. 26, 2013
  • pp: 20484–20496

Amplification and compression of temporally shaped picosecond pulses in Yb-doped rod-type fibers

S. Pierrot and F. Salin  »View Author Affiliations

Optics Express, Vol. 21, Issue 17, pp. 20484-20496 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1720 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on a new technique to produce high power sub-picosecond pulses from a fiber amplifier. We use parabolic pulse shaping of 27ps transform-limited pulses in order to control nonlinear effects in the fiber amplifier. 63MW, 780fs pulses with 25W average power were obtained, and ways to scale the technique to higher peak powers were identified.

© 2013 OSA

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(140.3510) Lasers and laser optics : Lasers, fiber
(320.5520) Ultrafast optics : Pulse compression
(320.5540) Ultrafast optics : Pulse shaping
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Ultrafast Optics

Original Manuscript: June 13, 2013
Revised Manuscript: August 1, 2013
Manuscript Accepted: August 6, 2013
Published: August 23, 2013

S. Pierrot and F. Salin, "Amplification and compression of temporally shaped picosecond pulses in Yb-doped rod-type fibers," Opt. Express 21, 20484-20496 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830W average output power,” Opt. Lett.35, 94–96 (2010). [CrossRef] [PubMed]
  2. F. Stutzki, F. Jansen, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “26mJ, 130W Q-switched fiber-laser system with near-diffraction-limited beam quality,” Opt. Lett.37, 1073–1075 (2012). [CrossRef] [PubMed]
  3. T. Eidam, J. Rothhardt, F. Stutzki, F. Jansen, S. H¨adrich, H. Carstens, C. Jauregui, J. Limpert, and A. Tünnermann, “Fiber chirped-pulse amplification system emitting 3.8GW peak power,” Opt. Express19, 255–260 (2011). [CrossRef] [PubMed]
  4. F. Stutzki, F. Jansen, T. Eidam, A. Steinmetz, C. Jauregui, J. Limpert, and A. Tünnermann, “High average power large-pitch fiber amplifier with robust single-mode operation,” Opt. Lett.36, 689–691 (2011). [CrossRef] [PubMed]
  5. D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun.56, 219–221 (1985). [CrossRef]
  6. M. D. Perry, T. Ditmire, and B. C. Stuart, “Self-phase modulation in chirped-pulse amplification,” Opt. Lett.19, 2149–2151 (1994). [CrossRef] [PubMed]
  7. F. Röser, T. Eidam, J. Rothhardt, O. Schmidt, D. N. Schimpf, J. Limpert, and A. Tünnermann, “Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system,” Opt. Lett.32, 3495–3497 (2007). [CrossRef] [PubMed]
  8. F. Röser, D. Schimpf, O. Schmidt, B. Orta, K. Rademaker, J. Limpert, and A. Tünnermann, “90W average power 100μ J energy femtosecond fiber chirped-pulse amplification system,” Opt. Lett.32, 2230–2232 (2007). [CrossRef]
  9. L. Shah, Z. Liu, I. Hartl, G. Imeshev, G. C. Cho, and M. E. Fermann, “High energy femtosecond Yb cubicon fiber amplifier,” Opt. Express13, 4717–4722 (2005). [CrossRef] [PubMed]
  10. S. Zhou, L. Kuznetsova, A. Chong, and F. W. Wise, “Compensation of nonlinear phase shifts with third-order dispersion in short-pulse fiber amplifiers,” Opt. Express13, 2149–2151 (2005). [CrossRef]
  11. L. Kuznetsova and F. W. Wise, “Scaling of femtosecond Yb-doped fiber amplifiers to tens of microjoule pulse energy via nonlinear chirped pulse amplification,” Opt. Lett.32, 2671–2673 (2007). [CrossRef] [PubMed]
  12. Y. Zaouter, J. Boullet, E. Mottay, and E. Cormier, “Transform-limited 100 μ J, 340MW pulses from a nonlinear-fiber chirped-pulse amplifier using a mismatched grating stretcher-compressor,” Opt. Lett.33, 2149–2151 (2008). [CrossRef]
  13. F. He, H. S. S. Hung, J. H. V. Price, N. K. Daga, N. Naz, J. Prawiharjo, D. C. Hanna, D. P. Shepherd, D. J. Richardson, J. W. Dawson, C. W. Siders, and C. P. J. Barty, “High energy femtosecond fiber chirped pulse amplification system with adaptive phase control,” Opt. Express16, 5813–5821 (2008). [CrossRef] [PubMed]
  14. D. Nguyen, M. U. Piracha, and P. J. Delfyett, “Transform-limited pulses for chirped-pulse amplification systems utilizing an active feedback pulse shaping technique enabling five time increase in peak power,” Opt. Lett.23, 4913–4915 (2012). [CrossRef]
  15. D. N. Schimpf, E. Seise, T. Eidam, J. Limpert, and A. Tünnermann, “Control of the optical Kerr effect in chirped-pulse-amplification systems using model-based phase shaping,” Opt. Lett.34, 3788–3790 (2009). [CrossRef] [PubMed]
  16. D. B. S. Soh, J. Nilsson, and A. B. Grudinin, “Efficient femtosecond pulse generation using a parabolic amplifier combined with a pulse compressor. II. Finite gain-bandwidth effect,” J. Opt. Soc. Am. B23, 10–19 (2006). [CrossRef]
  17. J. Saby, D. Sangla, S. Pierrot, P. Deslandes, and F. Salin, “High power industrial picosecond laser from IR to UV,” Proc. SPIE8601 (2013).
  18. T. Schreiber, D. Schimpf, D. Müller, F. Röser, J. Limpert, and A. Tünnermann, “Influence of pulse shape in self-phase-modulation-limited chirped pulse fiber amplifier systems,” J. Opt. Soc. Am. B24, 1809–1814 (2007). [CrossRef]
  19. D. N. Papadopoulos, Y. Zaouter, M. Hanna, F. Druon, E. Mottay, E. Cormier, and P. Georges, “Generation of 63fs 4.1MW peak power pulses from a parabolic fiber amplifier operated beyond the gain bandwidth limit,” Opt. Lett.32, 2520–2522 (2007). [CrossRef] [PubMed]
  20. M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett.84, 6010–6013 (2000). [CrossRef] [PubMed]
  21. S. Wang, B. Liu, C. Gu, Y. Song, C. Qian, M. Hu, L. Chai, and C. Wang, “Self-similar evolution in a short fiber amplifier through nonlinear pulse preshaping,” Opt. Lett.38, 296–298 (2013). [CrossRef] [PubMed]
  22. C. Finot, L. Provost, P. Petropoulos, and D. J. Richardson, “Parabolic pulse generation through passive nonlinear pulse reshaping in a normally dispersive two segment fiber device,” Opt. Express15, 852–864 (2007). [CrossRef] [PubMed]
  23. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, 2007).
  24. H. Nakatsuka, D. Grischkowsky, and A. C. Balant, “Nonlinear Picosecond-Pulse Propagation through Optical Fibers with Positive Group Velocity Dispersion,” Phys. Rev. Lett.47, 910–913 (1981). [CrossRef]
  25. W. J. Tomlinson, R. H. Stolen, and A. M. Johnson, “Optical wave breaking of pulses in nonlinear optical fibers,” Opt. Lett.10, 457–459 (1985). [CrossRef] [PubMed]
  26. C. Finot, B. Kibler, L. Provost, and S. Wabnitz, “Beneficial impact of wave-breaking for coherent continuum formation in normally dispersive nonlinear fibers,” J. Opt. Soc. Am. B25, 1938–1948 (2008). [CrossRef]
  27. D. Anderson, M. Desaix, M. Karlsson, M. Lisak, and M. L. Quiroga-Teixeiro, “Wave-breaking-free pulses in nonlinear-optical fibers,” J. Opt. Soc. Am. B10, 1185–1190 (1993). [CrossRef]
  28. W. J. Tomlinson, R. H. Stolen, and C. V. Shank, “Compression of optical pulses chirped by self-phase modulation in fibers,” J. Opt. Soc. Am. B1, 139–149 (1984). [CrossRef]
  29. F. Jansen, F. Stutzki, H.-J. Otto, T. Eidam, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “Thermally induced waveguide changes in active fibers,” Opt. Express20, 3997–4008 (2012). [CrossRef] [PubMed]
  30. C. Finot, F. Parmigiani, P. Petropoulos, and D. J. Richardson, “Parabolic pulse evolution in normally dispersive fiber amplifiers preceding the similariton formation regime,” Opt. Express14, 3161–3170 (2006). [CrossRef] [PubMed]
  31. R. Trebino and D. J. Kane, “Using phase retrieval to measure the intensity and phase of ultrashort pulses: frequency-resolved optical gating,” J. Opt. Soc. Am. A10, 1101–1111 (1993). [CrossRef]
  32. http://frog.gatech.edu .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited