OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 18 — Sep. 9, 2013
  • pp: 20497–20505

Orientation dependent wavefront correction system under grazing incidence

Xingkun Ma, Lei Huang, Mali Gong, Qiao Xue, Zexin Feng, Ping Yan, and Qiang Liu  »View Author Affiliations

Optics Express, Vol. 21, Issue 18, pp. 20497-20505 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1386 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Making use of the stretching effect of grazing incident laser beam, a novel method of wavefront correction was promoted. Without adding any extra beam expanding components, aberrations of wavefront could achieve satisfying correction by two grazing reflections along orthogonal directions on the deformable mirrors. The stretching effect expanded the beam size along grazing direction and the orientation dependent varying aberrations were well compensated as more actuators took effect in the correction process. Analysis showed that the fitting coefficient of all the first 30 order Zernike polynomials could be controlled within 5% by this method.

© 2013 Optical Society of America

OCIS Codes
(010.3310) Atmospheric and oceanic optics : Laser beam transmission
(140.3300) Lasers and laser optics : Laser beam shaping

ToC Category:
Optical Devices

Original Manuscript: May 28, 2013
Revised Manuscript: August 16, 2013
Manuscript Accepted: August 16, 2013
Published: August 26, 2013

Xingkun Ma, Lei Huang, Mali Gong, Qiao Xue, Zexin Feng, Ping Yan, and Qiang Liu, "Orientation dependent wavefront correction system under grazing incidence," Opt. Express 21, 20497-20505 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. L. Gong, Y. Qiu, L. Huang, Q. Liu, P. Yan, and H. T. Zhang, “Beam quality improvement by joint compensation of amplitude and phase,” Opt. Lett.38(7), 1101–1103 (2013). [CrossRef] [PubMed]
  2. W. Lubeigt, G. Valentine, and D. Burns, “Enhancement of laser performance using an intracavity deformable membrane mirror,” Opt. Express16(15), 10943–10955 (2008). [CrossRef] [PubMed]
  3. H. Baumhacker, G. Pretzler, K. J. Witte, M. Hegelich, M. Kaluza, S. Karsch, A. Kudryashov, V. Samarkin, and A. Roukossouev, “Correction of strong phase and amplitude modulations by two deformable mirrors in a multistaged Ti:sapphire laser,” Opt. Lett.27(17), 1570–1572 (2002). [CrossRef] [PubMed]
  4. S. Piehler, B. Weichelt, A. Voss, M. A. Ahmed, and T. Graf, “Power scaling of fundamental-mode thin-disk lasers using intracavity deformable mirrors,” Opt. Lett.37(24), 5033–5035 (2012). [CrossRef] [PubMed]
  5. F. Druon, G. Chériaux, J. Faure, J. Nees, M. Nantel, A. Maksimchuk, G. Mourou, J. C. Chanteloup, and G. Vdovin, “Wave-front correction of femtosecond terawatt lasers by deformable mirrors,” Opt. Lett.23(13), 1043–1045 (1998). [CrossRef] [PubMed]
  6. C. Valentin, J. Gautier, J.-P. Goddet, C. Hauri, T. Marchenko, E. Papalazarou, G. Rey, S. Sebban, O. Scrick, P. Zeitoun, G. Dovillaire, X. Levecq, S. Bucourt, and M. Fajardo, “High-order harmonic wave fronts generated with controlled astigmatic infrared laser,” J. Opt. Soc. Am. B25(7), 161–166 (2008). [CrossRef]
  7. X. Lei, B. Xu, P. Yang, L. Dong, W. Liu, and H. Yan, “Beam cleanup of a 532-nm pulsed solid-state laser using a bimorph mirror,” Chin. Opt. Lett.10(2), 021401 (2012). [CrossRef]
  8. X. Lei, S. Wang, H. Yan, W. Liu, L. Dong, P. Yang, and B. Xu, “Double-deformable-mirror adaptive optics system for laser beam cleanup using blind optimization,” Opt. Express20(20), 22143–22157 (2012). [CrossRef] [PubMed]
  9. S. Hu, B. Xu, X. Zhang, J. Hou, J. Wu, and W. Jiang, “Double-deformable-mirror adaptive optics system for phase compensation,” Appl. Opt.45(12), 2638–2642 (2006). [CrossRef] [PubMed]
  10. R. Zacharias, E. Bliss, S. Winters, R. Sacks, M. Feldman, A. Grey, J. Koch, C. Stolz, J. Toeppen, L. Van Atta, and B. Woods, “Wavefront control of high-power laser beams in the National Ignition Facility (NIF),” Proc. SPIE3889, 332–343 (2000). [CrossRef]
  11. R. Zacharias, E. Bliss, M. Feldman, A. Grey, M. Henesian, J. Koch, J. Lawson, R. Sacks, T. Salmon, J. Toeppen, L. Van Atta, S. Winters, B. Woods, C. Lafiandra, and D. G. Bruns, “The National Ignition Facility(NIF) wavefront control system,” Proc. SPIE3492, 678–692 (1999). [CrossRef]
  12. O. Solgaard, F. S. A. Sandejas, and D. M. Bloom, “Deformable grating optical modulator,” Opt. Lett.17(9), 688–690 (1992). [CrossRef] [PubMed]
  13. T. Sato, H. Ishida, and O. Ikeda, “Adaptive PVDF piezoelectric deformable mirror system,” Appl. Opt.19(9), 1430–1434 (1980). [CrossRef] [PubMed]
  14. P. Yang, Y. Liu, W. Yang, M.-W. Ao, S.-J. Hu, B. Xu, and W.-H. Jiang, “Adaptive mode optimization of a continuous-wave solid-state laser using an intracavity piezoelectric deformable mirror,” Opt. Commun.278(2), 377–381 (2007). [CrossRef]
  15. Q. Xue, L. Huang, P. Yan, M. Gong, Z. Feng, Y. Qiu, T. Li, and G. Jin, “Research on the particular temperature-induced surface shape of a National Ignition Facility deformable mirror,” Appl. Opt.52(2), 280–287 (2013). [CrossRef] [PubMed]
  16. M. Kasprzack, B. Canuel, F. Cavalier, R. Day, E. Genin, J. Marque, D. Sentenac, and G. Vajente, “Performance of a thermally deformable mirror for correction of low-order aberrations in laser beams,” Appl. Opt.52(12), 2909–2916 (2013). [CrossRef] [PubMed]
  17. M. A. Arain, W. Z. Korth, L. F. Williams, R. M. Martin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Adaptive control of modal properties of optical beams using photothermal effects,” Opt. Express18(3), 2767–2781 (2010). [CrossRef] [PubMed]
  18. D. Brousseau, E. F. Borra, and S. Thibault, “Wavefront correction with a 37-actuator ferrofluid deformable mirror,” Opt. Express15(26), 18190–18199 (2007). [CrossRef] [PubMed]
  19. N. Abramson, “The interferoscope: a new type of interferometer with variable fringe separation,” Optik (Stuttg.)30, 56–71 (1969).
  20. T. E. Carlsson, N. H. Abramson, and K. H. Fischer, “Automatic measurement of surface height with the interferoscope,” Opt. Eng.35(10), 2938–2942 (1996). [CrossRef]
  21. X. Colonna de Lega, J. F. Biegen, D. Stephenson, and P. J. de Groot, “Characterization of a geometrically desensitized interferometer for flatness testing,” Proc. SPIE3520, 284–292 (1998). [CrossRef]
  22. P. de Groot, “Diffractive grazing-incidence interferometer,” Appl. Opt.39(10), 1527–1530 (2000). [CrossRef] [PubMed]
  23. H. Nüger and J. Schwider, “Measurement of curvature and thickness variations of plane surfaces by grazing incidence interferometry,” Optik (Stuttg.)111, 319–327 (2000).
  24. H. Zimer, K. Albers, and U. Wittrock, “Grazing-incidence YVO4-Nd:YVO4 composite thin slab laser with low thermo-optic aberrations,” Opt. Lett.29(23), 2761–2763 (2004). [CrossRef] [PubMed]
  25. F. He, M. Gong, L. Huang, Q. Liu, Q. Wang, and X. Yan, “Compact TEM00 grazing-incidence Nd:GdVO4 laser using a folded cavity,” Appl. Phys. B86(3), 447–450 (2007). [CrossRef]
  26. W. Jiang and H. Li, “Hartmann-Shack wavefront sensing and wavefront control algorithm,” SPIE1271, 82–93 (1990). [CrossRef]
  27. X. Li, C. Wang, H. Xian, X. Wu, and W. Jiang, “Zernike modal compensation analysis for an adaptive optics system using direct-gradient wavefront reconstruction algorithm,” SPIE3762, 116–124 (1999). [CrossRef]
  28. H. Yang, G. Liu, C. Rao, Y. Zhang, and W. Jiang, “Combinational-deformable-mirror adaptive optics system for compensation of high-order modes of wavefront,” Chin. Opt. Lett.5, 435–437 (2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited