OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 18 — Sep. 9, 2013
  • pp: 20517–20528

Laser-induced fluorescence of uranyl complexes in aqueous solutions: the role of diffusion-controlled excited states annihilation

Gleb Budylin, Evgeny Shirshin, Victor Fadeev, Vladimir Petrov, and Stepan Kalmykov  »View Author Affiliations


Optics Express, Vol. 21, Issue 18, pp. 20517-20528 (2013)
http://dx.doi.org/10.1364/OE.21.020517


View Full Text Article

Enhanced HTML    Acrobat PDF (1112 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present the analysis of diffusion-controlled annihilation of excited U(VI) complexes in aqueous media that leads to appearance of rapid non-exponential fluorescence decay. We show that under typical experimental conditions the impact of annihilation processes can’t be neglected when determining U(VI) complexes fluorescence lifetimes: at excitation intensities between 106 W/cm2 and 108 W/cm2, the rate of excited states deactivation increases, and then an opposite trend is observed. The latter can be interpreted as the consequence of optical breakdown in water.

© 2013 Optical Society of America

OCIS Codes
(020.2070) Atomic and molecular physics : Effects of collisions
(260.2160) Physical optics : Energy transfer
(300.2530) Spectroscopy : Fluorescence, laser-induced
(300.6500) Spectroscopy : Spectroscopy, time-resolved

ToC Category:
Spectroscopy

History
Original Manuscript: June 18, 2013
Revised Manuscript: July 23, 2013
Manuscript Accepted: August 13, 2013
Published: August 26, 2013

Citation
Gleb Budylin, Evgeny Shirshin, Victor Fadeev, Vladimir Petrov, and Stepan Kalmykov, "Laser-induced fluorescence of uranyl complexes in aqueous solutions: the role of diffusion-controlled excited states annihilation," Opt. Express 21, 20517-20528 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-18-20517


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Meinrath, P. Schneider, and G. Meinrath, “Uranium ores and depleted uranium in the environment, with a reference to uranium in the biosphere from the Erzgebirge/Sachsen, Germany,” J. Env. Radioact.64, 175–193 (2003). [CrossRef]
  2. J. Fuger, “Thermodynamic properties of actinides aqueous species relevant to geochemical problems,” Radiochim. Acta58/59, 81–91 (1992).
  3. P. C. Burns, R. C. Ewing, and A. Navrotsky, “Nuclear fuel after a reactor accident,” Science335, 1184–1188 (2012). [CrossRef] [PubMed]
  4. L. Johnson, C. Ferry, Ch. Poinssot, and P. Lovera, “Spent fuel radionuclide source-term model for assessing spent fuel performance in geological disposal,” J. Nucl. Mater.346, 56–65 (2005). [CrossRef]
  5. D. W. Shoesmith, “Fuel corrosion processes under waste disposal conditions,” J. Nucl. Mater.282, 1–31 (2000). [CrossRef]
  6. I. Grenthe, Chemical Thermodynamics of Uranium, (Universal, 1992).
  7. R. Guillaumont, T. Fanghänel, J. Fuger, J. Grenthe, V. Neck, D. Palmer, and M. Rand, Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium, (Elsevier Science Publishers B.V., 2003).
  8. H. Zanker, W. Richter, V. Brendler, and H. Nitsche, “Colloid-borne uranium anf other heavy metals in the water of mine drainage gallery,” Radiochim. Acta88, 619–624 (2000). [CrossRef]
  9. C. May, P. Worsfold, and M. Keith-Roach, “Analytical techniques for speciation analysis of aqueous long-lived radionuclides in environmental matrices,” Trends Anal. Chem.27, 160–168 (2008). [CrossRef]
  10. Z. Szabo, T. Toraishi, V. Vallet, and I. Grenthe, “Solution coordination chemistry of actinides: Thermodynamics, structure and reaction mechanisms,” Coord. Chem. Rev.250, 784–815 (2006). [CrossRef]
  11. S. Tsushima, S. Nagasaki, S. Tanaka, and A. Suzuki, “A raman spectroscopic study of uranyl species adsorbed onto colloidal particles,” J. Phys. Chem. B102, 9029–9032 (1998). [CrossRef]
  12. S. Nguyen, R. Silva, H. Weed, and J. Andrews, “Standard gibbs free-energies of formation at the temperature 303.15-k of 4 uranyl silicates - soddyite, uranophane, sodium boltwoodite, and sodium weeksite,” J. Chem. Therm.24, 359–376 (1992). [CrossRef]
  13. G. Geipel, “Some aspects of actinide speciation by laser-induced spectroscopy,” Coord. Chem. Rev.250, 844–854 (2006). [CrossRef]
  14. T. Arnold, N. Baumann, E. Krawczyk-Bärsch, S. Brockmann, U. Zimmermann, U. Jenk, and S. Weiss, “Identification of the uranium speciation in an underground acid mine drainage environment,” Geochim. Cosmochim. Acta75, 2200–2212 (2011). [CrossRef]
  15. R. N. Collins, T. Saito, N. Aoyagi, T. E. Payne, T. Kimura, and T. D. Waite, “Applications of Time-Resolved Laser Fluorescence Spectroscopy to the Environmental Biogeochemistry of Actinides,” J. Env. Qual.40, 731–741 (2011). [CrossRef]
  16. S. Formosinho, H. Burrows, M. Miguel, M. Azenha, I. Saraiva, A. Ribeiro, I. Khudyakov, R. Gasanov, M. Bolte, and M. Sarakha, “Deactivation processes of the lowest excited state of [UO2(H2O)(5)](2+) in aqueous solution,” Photochem. Photobiol. Sciences2, 569–575 (2003). [CrossRef]
  17. M. Moriyasu, Y. Yokoyama, and S. Ikeda, “Anion coordination to uranyl ion and the luminescence lifetime of the uranyl complex,” J. Inorg. Nucl. Chem.39, 2199–2203 (1977). [CrossRef]
  18. Z. Fazekas, T. Yamamura, and H. Tomiyasu, “Deactivation and luminescence lifetimes of excited uranyl ion and its fluoro complexes,” J. All. Comp.271, 756–759 (1998). [CrossRef]
  19. J. Beitz and C. Williams, “Uranyl fluoride luminescence in acidic aqueous solutions,” J. All. Comp.250, 375–379 (1997). [CrossRef]
  20. I. Billard, E. Ansoborlo, K. Apperson, S. Arpigny, M. Azenha, D. Birch, P. Bros, H. Burrows, G. Choppin, L. Couston, V. Dubois, T. Fanghanel, G. Geipel, S. Hubert, J. Kim, T. Kimura, R. Klenze, A. Kronenberg, M. Kumke, G. Lagarde, G. Lamarque, S. Lis, C. Madic, G. Meinrath, C. Moulin, R. Nagaishi, D. Parker, G. Plancque, F. Scherbaum, E. Simoni, S. Sinkov, and C. Viallesoubranne, “Aqueous solutions of uranium(VI) as studied by time-resolved emission spectroscopy: A round-robin test,” Appl. Spectrosc.57, 1027–1038 (2003). [CrossRef] [PubMed]
  21. G. Geipel, A. Brachmann, V. Brendler, G. Bernhard, and H. Nitsche, “Uranium(VI) sulfate complexation studied by time-resolved laser-induced fluorescence spectroscopy (TRLFS),” Radiochim. Acta75, 199–204 (1996).
  22. T. Vercouter, P. Vitorge, B. Amekraz, and C. Moulin, “Stoichiometries and thermodynamic stabilities for aqueous sulfate complexes of U(VI),” Inorg. Chem.47, 2180–2189 (2008). [CrossRef] [PubMed]
  23. I. Billard and K. Lutzenkirchen, “Equilibrium constants in aqueous lanthanide and actinide chemistry from time-resolved fluorescence spectroscopy: The role of ground and excited state reactions,” Radiochim. Acta91, 285–294 (2003). [CrossRef]
  24. H. Sternlicht, G. Robinson, and G. Nieman, “Triplet-triplet annihilation and delayed fluorescence in molecular aggregates,” J. Chem. Phys.38, 1326–1335 (1963). [CrossRef]
  25. R. G. Denning, “Electronic structure and bonding in actinyl ions and their analogs,” J. Phys. Chem. A111, 4125–4143 (2007). [CrossRef] [PubMed]
  26. R. Ghosh, J. A. Mondal, H. N. Ghosh, and D. K. Palit, “Ultrafast Dynamics of the Excited States of the Uranyl Ion in Solutions,” J. Phys. Chem. A114, 5263–5270 (2010). [CrossRef] [PubMed]
  27. M. E. D. G. Azenha, H. D. Burrows, S. J. Formosinho, M. G. M. Miguel, A. P. Daramanyan, and I. V. Khudyakov, “On the uranyl ion luminescence in aqueous solutions,” J. Lumin.48–49, 522–526 (1991). [CrossRef]
  28. T. J. Barker, R. G. Denning, and J. R. G. Thorne, “Applications of Two-Photon Spectroscopy to Inorganic Compounds. 1. Spectrum and Electronic Structure of Cs2UO2Cl4,” Inorg. Chem.26, 1721–1732 (1987) [CrossRef]
  29. G. H. Dieke and A. B. F. Duncan, Spectroscopic properties of uranium compounds (McGraw-Hill Book Co, 1949).
  30. Y. Yokoyama, M. Moriyasu, and S. Ikeda, “Electron transfer mechanism in quenching of uranyl luminescence by halide ions,” J. Inorg. Nucl. Chem., 38, 1329–1333 (1979). [CrossRef]
  31. Y. Park, Y. Sakai, R. Abe, T. Ishii, M. Harada, T. Kojima, and H. Tomiyasuk, “Deactivation Mechanism of Excited Uranium(VI) Complexes in Aqueous Solutions,” J. Chem. Soc. Faraday Trans.86, 55–60 (1990). [CrossRef]
  32. S. V. Lotnik, L. A. Khamidullina, and V. P. Kazakov, “Influence of temperature on the lifetime of electronically excited uranyl ion: I. Liquid and supercooled H2SO4 solutions” Radiochem.45, 550–554 (2003) [CrossRef]
  33. P. Wahlin, V. Vallet, U. Wahlgren, and I. Grenthe, “Water Exchange Mechanism in the First Excited State of Hydrated Uranyl(VI)” Inorg. Chem.48, 11310–11313 (2009). [CrossRef] [PubMed]
  34. R. Hill, T. Kemp, D. Allen, and A. Cox, “Absorption-spectrum, lifetime and photoreactivity towards alcohols of excited-state of aqueous uranyl-ion (UO2+/2),” J. Chem. Soc. Faraday Trans. I70, 847–857 (1974). [CrossRef]
  35. A. Bakac and H. Burrows, “Uranyl ion: A convenient standard for transient molar absorption coefficient measurements,” Appl. Spectrosc.51, 1916–1917 (1997). [CrossRef]
  36. T. Förster, “Zwischenmolekulare Energiewanderung und Fluoreszenz,” Ann. Phys.2, 55–75 (1948). [CrossRef]
  37. D. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys.21, 836–850 (1953). [CrossRef]
  38. A. Monguzzi, R. Tubino, and F. Meinardi, “Upconversion-induced delayed fluorescence in multicomponent organic systems: Role of Dexter energy transfer,” Phys. Rev. B77, 196112 (2008).
  39. M. Marcantonatos, “Mechanism of quenching of uranyl-ion luminescence by metal-ions,” Inorg. Chim. Acta24, 53–55 (1977). [CrossRef]
  40. H. Burrows, A. Cardoso, S. Formosinho, and M. Miguel, “Photophysics of the excited uranyl-ion in aqueous-solutions .4. Quenching by metal-ions,” J. Chem. Soc. Faraday Trans. I81, 49–60 (1985). [CrossRef]
  41. G. Marx and H. Bischoff, “Transport processes of actinides in electrolyte-solutions. 1. Determination of ionic mobilities of uranium in aqueous-solutions at 25° by radioisotope method,” J. Radioan. Chem.30, 567–581 (1976). [CrossRef]
  42. S. Kerisit and C. Liu, “Molecular simulation of the diffusion of uranyl carbonate species in aqueous solution,” Geochim. Cosmochim. Acta74, 4937–4952 (2010). [CrossRef]
  43. A. Einstein, “The motion of elements suspended in static liquids as claimed in the molecular kinetic theory of heat,” Ann. Phys.17, 549–560 (1905). [CrossRef]
  44. M. von Smoluchowski, “Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen,” Zeitschr. Phys. Chem.92, 129–168 (1917).
  45. S. I. Wawilow, “The lifetime of the excited molecules in the fluorescent aqueous solutions,” Zeitschr. Phys.53, 665–674 (1929). [CrossRef]
  46. S. McGlynn and J. Smith, “Electronic structure, spectra, and magnetic properties of actinyl ions. 1. Uranyl ion,” J. Mol. Sp.6, 164–187 (1961). [CrossRef]
  47. J. Bell and R. Biggers, “Absorption spectrum of uranyl ion in perchlorate media. I. Mathematical resolution of overlapping band structure and studies of environmental effects,” J. Mol. Spectrosc.18, 247–275 (1965). [CrossRef]
  48. A. A. Banishev, D. V. Maslov, and V. V. Fadeev, “A Nanosecond Laser Fluorimeter,” Phys. Instrum. Ecolog. Med. Biolog.49, 430–434 (2006).
  49. E. Jones, Tr. Oliphant, and P. Peterson, and others, “SciPy: Open source scientific tools for Python” (2001), http://www.scipy.org/ .
  50. I. Puigdomenech, “Chemical Equilibrium Diagrams”, https://sites.google.com/site/chemdiagr/
  51. A. Kirishima, T. Kimura, O. Tochiyama, and Z. Yoshida, “Speciation study on complex formation of uranium(VI) with phosphate and uoride at high temperatures and pressures by time-resolved laser-induced uorescence spectroscopy,” Radiochim. Acta92, 889–896 (2004). [CrossRef]
  52. D. Nikogosyan, A. Oraevsky, and V. Rupasov, “2-photon ionization and dissociation of liquid water by powerful laser uv-radiation,” Chem. Phys.77, 131–143 (1983). [CrossRef]
  53. A. Vogel, K. Nahen, D. Theisen, and J. Noack, “Plasma formation in water by picosecond and nanosecond Nd:YAG laser pulses. 1. Optical breakdown at threshold and superthreshold irradiance,” IEEE J. Sel. Top. Quantum Electron.2, 847–860 (1996). [CrossRef]
  54. S. Kudryashov and V. Zvorykin, “Microscale nanosecond laser-induced optical breakdown in water,” Phys. Rev. E78, 036404 (2008). [CrossRef]
  55. A. B. Yusov and V. P. Shilov, “Photochemistry of f-elements ions,” Russ. Chem. Bull.49, 1925–1953 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited