OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 18 — Sep. 9, 2013
  • pp: 20556–20564

Evolution of dissipative solitons in a fiber laser oscillator in the presence of strong Raman scattering

A. E. Bednyakova, S. A. Babin, D. S. Kharenko, E. V. Podivilov, M. P. Fedoruk, V. L. Kalashnikov, and A. Apolonski  »View Author Affiliations

Optics Express, Vol. 21, Issue 18, pp. 20556-20564 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3191 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



As recently revealed, chirped dissipative solitons (DSs) generated in a long cavity fiber laser are subject to action of stimulated Raman scattering (SRS). Here we present theoretical and experimental study of the DS formation and evolution in the presence of strong SRS. The results demonstrate that the rising noisy Raman pulse (RP) acts not only as an additional channel of the energy dissipation destroying DS, but on the contrary can support it that results in formation of a complex of the bound DS and RP of comparable energy and duration. In the complex, the DS affords amplification of the RP, whereas the RP stabilizes the DS via temporal-spectral filtering. Stable 25 nJ SRS-driven chirped DS pulses are generated in all-fiber ring laser cavities with lengths of up to 120 m. The DS with duration up to 70 ps can be externally dechirped to <300 fs thus demonstrating the record compression factor.

© 2013 Optical Society of America

OCIS Codes
(140.4050) Lasers and laser optics : Mode-locked lasers
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(190.5650) Nonlinear optics : Raman effect
(320.7090) Ultrafast optics : Ultrafast lasers

ToC Category:
Nonlinear Optics

Original Manuscript: July 4, 2013
Revised Manuscript: August 8, 2013
Manuscript Accepted: August 9, 2013
Published: August 26, 2013

A. E. Bednyakova, S. A. Babin, D. S. Kharenko, E. V. Podivilov, M. P. Fedoruk, V. L. Kalashnikov, and A. Apolonski, "Evolution of dissipative solitons in a fiber laser oscillator in the presence of strong Raman scattering," Opt. Express 21, 20556-20564 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. V. Vanin, A. I. Korytin, A. M. Sergeev, D. Anderson, M. Lisak, and L. Vázquez, “Dissipative optical solitons,” Phys. Rev. A49(4), 2806–2811 (1994). [CrossRef] [PubMed]
  2. B. S. Kerner and V. V. Osipov, Autosolitons: A New Approach to Problems of Self-Organization and Turbulence (Kuwer Academic Publishers, 1994).
  3. N. Akhmediev and A. Ankiewicz, Dissipative Solitons (Springer, 2005).
  4. N. Akhmediev and A. Ankiewicz, Dissipative Solitons: From Optics to Biology and Medicine (Springer, 2008).
  5. Ph. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics6(2), 84–92 (2012). [CrossRef]
  6. W. H. Renninger and F. W. Wise, “Dissipative soliton fiber laser,” in Fiber Lasers, O. G. Okhotnikov, ed. (Wiley, 2012), pp. 97–134.
  7. S. K. Turitsyn, B. Bale, and M. P. Fedoruk, “Dispersion-managed solitons in fibre systems and lasers,” Phys. Rep.521(4), 135–203 (2012). [CrossRef]
  8. H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron.6(6), 1173–1185 (2000). [CrossRef]
  9. A. Fernandez, T. Fuji, A. Poppe, A. Fürbach, F. Krausz, and A. Apolonski, “Chirped-pulse oscillators: a route to high-power femtosecond pulses without external amplification,” Opt. Lett.29(12), 1366–1368 (2004). [CrossRef] [PubMed]
  10. D. Mortag, D. Wandt, U. Morgner, D. Kracht, and J. Neumann, “Sub-80-fs pulses from an all-fiber-integrated dissipative-soliton laser at 1 µm,” Opt. Express19(2), 546–551 (2011). [CrossRef] [PubMed]
  11. A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express14(21), 10095–10100 (2006). [CrossRef] [PubMed]
  12. A. Chong, W. H. Renninger, and F. W. Wise, “All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ,” Opt. Lett.32(16), 2408–2410 (2007). [CrossRef] [PubMed]
  13. K. Kieu, W. H. Renninger, A. Chong, and F. W. Wise, “Sub-100 fs pulses at watt-level powers from a dissipative-soliton fiber laser,” Opt. Lett.34(5), 593–595 (2009). [CrossRef] [PubMed]
  14. S. Lefrançois, K. Kieu, Y. Deng, J. D. Kafka, and F. W. Wise, “Scaling of dissipative soliton fiber lasers to megawatt peak powers by use of large-area photonic crystal fiber,” Opt. Lett.35(10), 1569–1571 (2010). [CrossRef] [PubMed]
  15. M. Baumgartl, C. Lecaplain, A. Hideur, J. Limpert, and A. Tünnermann, “66 W average power from a microjoule-class sub-100 fs fiber oscillator,” Opt. Lett.37(10), 1640–1642 (2012). [CrossRef] [PubMed]
  16. C. K. Nielsen, B. Ortaç, T. Schreiber, J. Limpert, R. Hohmuth, W. Richter, and A. Tünnermann, “Self-starting self-similar all-polarization maintaining Yb-doped fiber laser,” Opt. Express13(23), 9346–9351 (2005). [CrossRef] [PubMed]
  17. D. S. Kharenko, E. V. Podivilov, A. A. Apolonski, and S. A. Babin, “20 nJ 200 fs all-fiber highly chirped dissipative soliton oscillator,” Opt. Lett.37(19), 4104–4106 (2012). [CrossRef] [PubMed]
  18. M. Erkintalo, C. Aguergaray, A. Runge, and N. G. R. Broderick, “Environmentally stable all-PM all-fiber giant chirp oscillator,” Opt. Express20(20), 22669–22674 (2012). [CrossRef] [PubMed]
  19. C. Aguergaray, A. Runge, M. Erkintalo, and N. G. R. Broderick, “Raman-driven destabilization of giant-chirp oscillators: fundamental limitations to energy scalability,” in Conference on Lasers and Electro-Optics - Europe 2013, OSA Technical Digest (online) (Optical Society of America, 2012), paper CJ-9.
  20. D. S. Kharenko, O. V. Shtyrina, I. A. Yarutkina, E. V. Podivilov, M. P. Fedoruk, and S. A. Babin, “Highly chirped dissipative solitons as a one-parameter family of stable solutions of the cubic-quintic Ginzburg-Landau equation,” J. Opt. Soc. Am. B28(10), 2314–2319 (2011). [CrossRef]
  21. D. S. Kharenko, O. V. Shtyrina, I. A. Yarutkina, E. V. Podivilov, M. P. Fedoruk, and S. A. Babin, “Generation and scaling of highly-chirped dissipative solitons in an Yb-doped fiber laser,” Laser Phys. Lett.9, 662–668 (2012).
  22. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2007).
  23. D. Hollenbeck and C. D. Cantrell, “Multiple-vibrational-mode model for fiber-optic Raman gain spectrum and response function,” J. Opt. Soc. Am. B19(12), 2886–2892 (2002). [CrossRef]
  24. A. Komarov, H. Leblond, and F. Sanchez, “Multistability and hysteresis phenomena in passively mode-locked fiber lasers,” Phys. Rev. A71(5), 053809 (2005). [CrossRef]
  25. R. Trebino, Frequency Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Springer, 2002).
  26. V. L. Kalashnikov, E. Podivilov, A. Chernykh, and A. Apolonski, “Chirped-pulse oscillators: theory and experiment,” Appl. Phys. B83(4), 503–510 (2006). [CrossRef]
  27. W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A78(2), 023830 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited