OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 18 — Sep. 9, 2013
  • pp: 20565–20576

One-step leapfrog ADI-FDTD method for simulating electromagnetic wave propagation in general dispersive media

Xiang-Hua Wang, Wen-Yan Yin, and Zhi Zhang (David) Chen  »View Author Affiliations

Optics Express, Vol. 21, Issue 18, pp. 20565-20576 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1940 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The one-step leapfrog alternating-direction-implicit finite-difference time-domain (ADI-FDTD) method is reformulated for simulating general electrically dispersive media. It models material dispersive properties with equivalent polarization currents. These currents are then solved with the auxiliary differential equation (ADE) and then incorporated into the one-step leapfrog ADI-FDTD method. The final equations are presented in the form similar to that of the conventional FDTD method but with second-order perturbation. The adapted method is then applied to characterize (a) electromagnetic wave propagation in a rectangular waveguide loaded with a magnetized plasma slab, (b) transmission coefficient of a plane wave normally incident on a monolayer graphene sheet biased by a magnetostatic field, and (c) surface plasmon polaritons (SPPs) propagation along a monolayer graphene sheet biased by an electrostatic field. The numerical results verify the stability, accuracy and computational efficiency of the proposed one-step leapfrog ADI-FDTD algorithm in comparison with analytical results and the results obtained with the other methods.

© 2013 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(160.1190) Materials : Anisotropic optical materials
(240.0310) Optics at surfaces : Thin films
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Physical Optics

Original Manuscript: July 8, 2013
Revised Manuscript: August 15, 2013
Manuscript Accepted: August 15, 2013
Published: August 26, 2013

Xiang-Hua Wang, Wen-Yan Yin, and Zhi Zhang (David) Chen, "One-step leapfrog ADI-FDTD method for simulating electromagnetic wave propagation in general dispersive media," Opt. Express 21, 20565-20576 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).
  2. C. Lundgren, R. Lopez, J. Redwing, and K. Melde, “FDTD modeling of solar energy absorption in silicon branched nanowires,” Opt. Express21(9), 329–400 (2013). [PubMed]
  3. E. H. Khoo, I. Ahmed, R. S. M. Goh, K. H. Lee, T. G. G. Hung, and E. P. Li, “Efficient analysis of mode profiles in elliptical microcavity using dynamic-thermal electron-quantum medium FDTD method,” Opt. Express21(5), 5910–5923 (2013). [CrossRef] [PubMed]
  4. D. T. Nguyen and R. A. Norwood, “Label-free, single-object sensing with a microring resonator: FDTD simulation,” Opt. Express21(1), 49–59 (2013). [CrossRef] [PubMed]
  5. I. R. Çapoğlu, A. Taflove, and V. Backman, “Computation of tightly-focused laser beams in the FDTD method,” Opt. Express21(1), 87–101 (2013). [CrossRef] [PubMed]
  6. S. Buil, J. Laverdant, B. Berini, P. Maso, J. P. Hermier, and X. Quélin, “FDTD simulations of localization and enhancements on fractal plasmonics nanostructures,” Opt. Express20(11), 11968–11975 (2012). [CrossRef] [PubMed]
  7. C. M. Dissanayake, M. Premaratne, I. D. Rukhlenko, and G. P. Agrawal, “FDTD modeling of anisotropic nonlinear optical phenomena in silicon waveguides,” Opt. Express18(20), 21427–21448 (2010). [CrossRef] [PubMed]
  8. G. Singh, K. Ravi, Q. Wang, and S. T. Ho, “Complex-envelope alternating-direction-implicit FDTD method for simulating active photonic devices with semiconductor/solid-state media,” Opt. Lett.37(12), 2361–2363 (2012). [CrossRef] [PubMed]
  9. G. Singh, E. L. Tan, and Z. N. Chen, “Split-step finite-difference time-domain method with perfectly matched layers for efficient analysis of two-dimensional photonic crystals with anisotropic media,” Opt. Lett.37(3), 326–328 (2012). [CrossRef] [PubMed]
  10. S. Zhao, “High-order FDTD methods for transverse electromagnetic systems in dispersive inhomogeneous media,” Opt. Lett.36(16), 3245–3247 (2011). [CrossRef] [PubMed]
  11. W. H. Weedon and C. M. Rappaport, “A general method for FDTD modeling of wave propagation in arbitrary frequency-dispersive media,” IEEE Trans. Antenn. Propag.45(3), 401–410 (1997). [CrossRef]
  12. D. Sullivan, “Nonlinear FDTD formulations using Z transforms,” IEEE Trans. Microw. Theory Tech.43(3), 676–682 (1995). [CrossRef]
  13. R. J. Luebbers and F. Hunsberger, “FDTD Nth-order dispersive media,” IEEE Trans. Antenn. Propag.40(11), 1297–1301 (1992). [CrossRef]
  14. M. Han, R. Dutton, and S. Fan, “Model dispersive media in finite-difference time-domain method with complex-conjugate pole-residue pairs,” IEEE Microw. Wirel. Compon. Lett.16(3), 119–121 (2006). [CrossRef]
  15. P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys.125(16), 164705 (2006). [CrossRef] [PubMed]
  16. L. Han, D. Zhou, K. Li, X. Li, and W. P. Huang, “A rational-fraction dispersion model for efficient simulation of dispersive material in FDTD method,” IEEE J. Light. Tech.30(13), 2216–2225 (2012). [CrossRef]
  17. M. Alsunaidi and A. Al-Jabr, “A general ADE-FDTD algorithm for the simulation of dispersive structures,” IEEE Photon. Technol. Lett.21(12), 817–819 (2009). [CrossRef]
  18. A. Al-Jabr, M. Alsunaidi, T. Khee, and B. S. Ooi, “A simple FDTD algorithm for simulating EM-wave propagation in general dispersive anisotropic material,” IEEE Trans. Antenn. Propag.61(3), 1321–1326 (2013). [CrossRef]
  19. L. J. Xu and N. C. Yuan, “FDTD formulations for scattering from 3-D anisotropic magnetized plasma objects,” IEEE Antennas Wirel. Propag. Lett.5(1), 335–338 (2006). [CrossRef]
  20. D. F. Kelley and R. J. Luebbers, “Piecewise linear recursive convolution for dispersive media using FDTD,” IEEE Trans. Antenn. Propag.44(6), 792–797 (1996). [CrossRef]
  21. Y. Yu and J. Simpson, “An EJ collocated 3-D FDTD model of electromagnetic wave propagation in magnetized cold plasma,” IEEE Trans. Antenn. Propag.58(2), 469–478 (2010). [CrossRef]
  22. S. Liu and S. Liu, “Runge-Kutta exponential time differencing FDTD method for anisotropic magnetized plasma,” IEEE Antennas Wirel. Propag. Lett.7, 306–309 (2008). [CrossRef]
  23. D. Y. Heh and E. L. Tan, “FDTD modeling for dispersive media using matrix exponential method,” IEEE Microw. Wirel. Compon. Lett.19(2), 53–55 (2009). [CrossRef]
  24. S. Huang and F. Li, “FDTD implementation for magnetoplasma medium using exponential time differencing,” IEEE Microw. Wirel. Compon. Lett.15(3), 183–185 (2005). [CrossRef]
  25. S. J. Cooke, M. Botton, T. M. Antonsen, and B. Levush, “A leapfrog formulation of the 3D ADI-FDTD algorithm,” Int. J. Numer. Model.22(2), 187–200 (2009). [CrossRef]
  26. F. Zheng, Z. Chen, and J. Zhang, “Toward the development of a three dimensional unconditionally stable finite-different time-domain method,” IEEE Trans. Microw. Theory Tech.48(9), 1550–1558 (2000). [CrossRef]
  27. E. L. Tan, “Fundamental schemes for efficient unconditionally stable implicit finite-difference time-domain methods,” IEEE Trans. Antenn. Propag.56(1), 170–177 (2008). [CrossRef]
  28. X. H. Wang, W. Y. Yin, Y. Q. Yu, Z. Chen, J. Wang, and Y. Guo, “A convolutional perfect matched layer (CPML) for one-step leapfrog ADI-FDTD method and its applications to EMC problems,” IEEE Trans. Electromagn. Compat.54(5), 1066–1076 (2012). [CrossRef]
  29. T. H. Gan and E. T. Tan, “Mur absorbing boundary condition for 2-D leapfrog ADI-FDTD method,” in proceedings of IEEE Conference on Asia-Pacific Antennas and Propagation, 3–4 (2012). [CrossRef]
  30. Y. F. Mao, B. Chen, J. L. Xia, J. Chen, and J. Z. Tang, “Application of the leapfrog ADI-FDTD method to periodic structures,” IEEE Antennas Wirel. Propag. Lett.12, 599–602 (2013). [CrossRef]
  31. T. H. Gan and E. L. Tan, “Analysis of the divergence properties for the three-dimensional leapfrog ADI-FDTD method,” IEEE Trans. Antenn. Propag.60(12), 5801–5808 (2012). [CrossRef]
  32. T. H. Gan and E. L. Tan, “Unconditionally stable leapfrog ADI-FDTD method for lossy media,” Progress In Electromagnetics Research M26, 173–186 (2012).
  33. X. H. Wang, W. Y. Yin, and Z. Chen, “One-step leapfrog ADI-FDTD method for anisotropic magnetized plasma,” in proceedings of IEEE International Microwave Symposium, 1–4 (2013).
  34. J. Y. Gao and H. X. Zheng, “One-Step leapfrog ADI-FDTD method for lossy media and its stability analysis,” Progress In Electromagnetics Research Letters40, 49–60 (2013).
  35. D. L. Sounas and C. Caloz, “Gyrotropy and nonreciprocity of graphene for microwave applications,” IEEE Trans. Microw. Theory Tech.60(4), 901–914 (2012). [CrossRef]
  36. B. Wang, X. Zhang, X. Yuan, and J. Teng, “Optical coupling of surface plasmons between graphene sheets,” Appl. Phys. Lett.100(13), 131111 (2012). [CrossRef]
  37. H. Lin, M. F. Pantoja, L. D. Angulo, J. Alvarez, R. G. Martin, and S. G. Garcia, “FDTD modeling of graphene devices using complex conjugate dispersion material model,” IEEE Microw. Wirel. Compon. Lett.22(12), 612–614 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited