OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 18 — Sep. 9, 2013
  • pp: 20588–20600

Semi-analytical approach for guided mode resonance in high-index-contrast photonic crystal slab: TE polarization

Yi Yang, Chao Peng, and Zhengbin Li  »View Author Affiliations


Optics Express, Vol. 21, Issue 18, pp. 20588-20600 (2013)
http://dx.doi.org/10.1364/OE.21.020588


View Full Text Article

Enhanced HTML    Acrobat PDF (1963 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In high-contrast (HC) photonic crystals (PC) slabs, the high-order coupling is so intense that it is indispensable for analyzing the guided mode resonance (GMR) effect. In this paper, a semi-analytical approach is proposed for analyzing GMR in HC PC slabs with TE-like polarization. The intense high-order coupling is included by using a convergent recursive procedure. The reflection of radiative waves at high-index-contrast interfaces is also considered by adopting a strict Green’s function for multi-layer structures. Modal properties of interest like band structure, radiation constant, field profile are calculated, agreeing well with numerical finite-difference time-domain simulations. This analysis is promising for the design and optimization of various HC PC devices.

© 2013 Optical Society of America

OCIS Codes
(140.3430) Lasers and laser optics : Laser theory
(160.5293) Materials : Photonic bandgap materials
(160.5298) Materials : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: July 18, 2013
Revised Manuscript: August 14, 2013
Manuscript Accepted: August 15, 2013
Published: August 26, 2013

Citation
Yi Yang, Chao Peng, and Zhengbin Li, "Semi-analytical approach for guided mode resonance in high-index-contrast photonic crystal slab: TE polarization," Opt. Express 21, 20588-20600 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-18-20588


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B60, 5751–5758 (1999). [CrossRef]
  2. S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B65, 235112 (2002). [CrossRef]
  3. D. Rosenblatt, A. Sharon, and A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron.33, 2038–2059 (1997). [CrossRef]
  4. M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. Young, S. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett.70, 1438–1440 (1997). [CrossRef]
  5. M. Boroditsky, R. Vrijen, T. F. Krauss, R. Coccioli, R. Bhat, and E. Yablonovitch, “Spontaneous emission extraction and purcell enhancement from thin-film 2-d photonic crystals,” J. Lightwave Technol.17, 2096–2112 (1999). [CrossRef]
  6. P. Paddon and J. F. Young, “Two-dimensional vector-coupled-mode theory for textured planar waveguides,” Phys. Rev. B61, 2090–2101 (2000). [CrossRef]
  7. V. Pacradouni, W. J. Mandeville, A. R. Cowan, P. Paddon, J. F. Young, and S. R. Johnson, “Photonic band structure of dielectric membranes periodically textured in two dimensions,” Phys. Rev. B62, 4204–4207 (2000). [CrossRef]
  8. M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. Slusher, J. Joannopoulos, and O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett.74, 7–9 (1999). [CrossRef]
  9. M. Kim, C. S. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, I. Vurgaftman, and J. R. Meyer, “Surface-emitting photonic-crystal distributed-feedback laser for the midinfrared,” Appl. Phys. Lett.88, 191105 (2006). [CrossRef]
  10. L. Sirigu, R. Terazzi, M. I. Amanti, M. Giovannini, J. Faist, L. A. Dunbar, and R. Houdré, “Terahertz quantum cascade lasersbased on two-dimensional photoniccrystal resonators,” Opt. Express16, 5206–5217 (2008). [CrossRef] [PubMed]
  11. Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions,” Nature (London)457, 174–178 (2009). [CrossRef]
  12. T. Lu, S. Chen, L. Lin, T. Kao, C. Kao, P. Yu, H. Kuo, S. Wang, and S. Fan, “GaN-based two-dimensional surface-emitting photonic crystal lasers with AlN/GaN distributed bragg reflector,” Appl. Phys. Lett.92, 011129 (2008). [CrossRef]
  13. H. Matsubara, S. Yoshimoto, H. Saito, Y. Jianglin, Y. Tanaka, and S. Noda, “GaN photonic-crystal surface-emitting laser at blue-violet wavelengths,” Science319, 445–447 (2008). [CrossRef]
  14. S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design,” Science293, 1123–1125 (2001). [CrossRef] [PubMed]
  15. E. Miyai, K. Sakai, T. Okano, W. Kunishi, D. Ohnishi, and S. Noda, “Photonics: Lasers producing tailored beams,” Nature (London)441, 946 (2006). [CrossRef]
  16. Y. Kurosaka, S. Iwahashi, Y. Liang, K. Sakai, E. Miyai, W. Kunishi, D. Ohnishi, and S. Noda, “On-chip beam-steering photonic-crystal lasers,” Nature Photon.4, 447–450 (2010). [CrossRef]
  17. A. Mekis, A. Dodabalapur, R. E. Slusher, and J. D. Joannopoulos, “Two-dimensional photonic crystal couplers for unidirectional light output,” Opt. Lett.25, 942–944 (2000). [CrossRef]
  18. S. Peng and G. M. Morris, “Resonant scattering from two-dimensional gratings,” J. Opt. Soc. Am. A13, 993–1005 (1996). [CrossRef]
  19. Y. Zhou, M. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. Sedgwick, and C. Chang-Hasnain, “High-index-contrast grating (HCG) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron.15, 1485–1499 (2009). [CrossRef]
  20. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics1, 119–122 (2007). [CrossRef]
  21. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “Single mode high-contrast subwavelength grating vertical cavity surface emitting lasers,” Appl. Phys. Lett.92, 171108 (2008). [CrossRef]
  22. Y. Zhou, M. C. Y. Huang, and C. Chang-Hasnain, “Large fabrication tolerance for VCSELs using high-contrast grating,” IEEE Photon. Technol. Lett.20, 434–436 (2008). [CrossRef]
  23. J. Lee, B. Zhen, S. L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Observation and differentiation of unique high-Q optical resonances near zero wave vector in macroscopic photonic crystal slabs,” Phys. Rev. Lett.109, 067401 (2012). [CrossRef] [PubMed]
  24. C. W. Hsu, B. Zhen, J. Lee, S. L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature (London)499, 188–191 (2013). [CrossRef]
  25. N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. a. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nature Nano.2, 515–520 (2007). [CrossRef]
  26. B. Zhen, S. L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. USA (2013). In press. [CrossRef] [PubMed]
  27. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comp. Phys. Commun.181, 687–702 (2010). [CrossRef]
  28. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A12, 1068–1076 (1995). [CrossRef]
  29. Y. Liang, C. Peng, K. Sakai, S. Iwahashi, and S. Noda, “Three-dimensional coupled-wave model for square-lattice photonic crystal lasers with transverse electric polarization: A general approach,” Phys. Rev. B84, 195119 (2011). [CrossRef]
  30. Y. Liang, C. Peng, K. Sakai, S. Iwahashi, and S. Noda, “Three-dimensional coupled-wave analysis for square-lattice photonic crystal surface emitting lasers with transverse-electric polarization: finite-size effects,” Opt. Express20, 15945–15961 (2012). [CrossRef] [PubMed]
  31. C. Peng, Y. Liang, K. Sakai, S. Iwahashi, and S. Noda, “Three-dimensional coupled-wave theory analysis of a centered-rectangular lattice photonic crystal laser with a transverse-electric-like mode,” Phys. Rev. B86, 035108 (2012). [CrossRef]
  32. Y. Liang, C. Peng, K. Ishizaki, S. Iwahashi, K. Sakai, Y. Tanaka, K. Kitamura, and S. Noda, “Three-dimensional coupled-wave analysis for triangular-lattice photonic-crystal surface-emitting lasers with transverse-electric polarization,” Opt. Express21, 565–580 (2013). [CrossRef] [PubMed]
  33. C. Peng, Y. Liang, K. Sakai, S. Iwahashi, and S. Noda, “Coupled-wave analysis for photonic-crystal surface-emitting lasers on air holes with arbitrary sidewalls,” Opt. Express19, 24672–24686 (2011). [CrossRef] [PubMed]
  34. K. Sakai, E. Miyai, and S. Noda, “Coupled-wave model for square-lattice two-dimensional photonic crystal with transverse-electric-like mode,” Appl. Phys. Lett.89, 021101 (2006). [CrossRef]
  35. H. Ryu, M. Notomi, and Y. Lee, “Finite-difference time-domain investigation of band-edge resonant modes in finite-size two-dimensional photonic crystal slab,” Phys. Rev. B68, 045209 (2003). [CrossRef]
  36. W. Streifer, D. R. Scifres, and R. Burnham, “Analysis of grating-coupled radiation in GaAs:GaAlAs lasers and waveguides - I,” IEEE J. Quantum Electron.12, 422–428 (1976). [CrossRef]
  37. M. J. Bergmann and H. C. Casey, “Optical-field calculations for lossy multiple-layer AlxGa1-xN/InxGa1-xN laser diodes,” J. Appl. Phys.84, 1196–1203 (1998). [CrossRef]
  38. M. Yokoyama and S. Noda, “Finite-difference time-domain simulation of two-dimensional photonic crystal surface-emitting laser,” Opt. Express13, 2869–2880 (2005). [CrossRef] [PubMed]
  39. K. Sakai, J. Yue, and S. Noda, “Coupled-wave model for triangular-lattice photonic crystal with transverse electric polarization,” Opt. Express16, 6033–6040 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited