OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 18 — Sep. 9, 2013
  • pp: 20601–20610

High quality factor silica microspheres functionalized with self-assembled nanomaterials

Ishac Kandas, Baigang Zhang, Chalongrat Daengngam, Islam Ashry, Chih-Yu Jao, Bo Peng, Sahin K. Ozdemir, Hans D. Robinson, James R. Heflin, Lan Yang, and Yong Xu  »View Author Affiliations

Optics Express, Vol. 21, Issue 18, pp. 20601-20610 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1806 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



With extremely low material absorption and exceptional surface smoothness, silica-based optical resonators can achieve extremely high cavity quality (Q) factors. However, the intrinsic material limitations of silica (e.g., lack of second order nonlinearity) may limit the potential applications of silica-based high Q resonators. Here we report some results in utilizing layer-by-layer self-assembly to functionalize silica microspheres with nonlinear and plasmonic nanomaterials while maintaining Q factors as high as 107. We compare experimentally measured Q factors with theoretical estimates, and find good agreement.

© 2013 OSA

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:

Original Manuscript: June 6, 2013
Revised Manuscript: August 1, 2013
Manuscript Accepted: August 6, 2013
Published: August 27, 2013

Ishac Kandas, Baigang Zhang, Chalongrat Daengngam, Islam Ashry, Chih-Yu Jao, Bo Peng, Sahin K. Ozdemir, Hans D. Robinson, James R. Heflin, Lan Yang, and Yong Xu, "High quality factor silica microspheres functionalized with self-assembled nanomaterials," Opt. Express 21, 20601-20610 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett.21(7), 453–455 (1996). [CrossRef] [PubMed]
  2. A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes-part I: basics,” IEEE J. Quantum Electron.12(1), 3–14 (2006). [CrossRef]
  3. K. J. Vahala, “Optical microcavities,” Nature424(6950), 839–846 (2003). [CrossRef] [PubMed]
  4. J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4(1), 46–49 (2010). [CrossRef] [PubMed]
  5. H. C. Ren, F. Vollmer, S. Arnold, and A. Libchaber, “High-Q microsphere biosensor - analysis for adsorption of rodlike bacteria,” Opt. Express15(25), 17410–17423 (2007). [CrossRef] [PubMed]
  6. G. Kozyreff, J. L. Dominguez-Juarez, and J. Martorell, “Nonlinear optics in spheres: from second harmonic scattering to quasi-phase matched generation in whispering gallery modes,” Laser Photon. Rev.5(6), 737–749 (2011). [CrossRef]
  7. T. J. Kippenberg and K. J. Vahala, “Cavity opto-mechanics,” Opt. Express15(25), 17172–17205 (2007). [CrossRef] [PubMed]
  8. J. D. Suter, Y. Sun, D. J. Howard, J. A. Viator, and X. Fan, “PDMS embedded opto-fluidic microring resonator lasers,” Opt. Express16(14), 10248–10253 (2008). [CrossRef] [PubMed]
  9. Y. Xu, A. Wang, J. R. Heflin, and Z. Liu, “Proposal and analysis of a silica fiber with large and thermodynamically stable second order nonlinearity,” Appl. Phys. Lett.90(21), 211110 (2007). [CrossRef]
  10. S. I. Shopova, C. W. Blackledge, and A. T. Rosenberger, “Enhanced evanescent coupling to whispering-galley modes due to gold nanorods grown on the microresonator surface,” Appl. Phys. B93(1), 183–187 (2008). [CrossRef]
  11. Y. Xu, M. Han, A. Wang, Z. Liu, and J. R. Heflin, “Second order parametric processes in nonlinear silica microspheres,” Phys. Rev. Lett.100(16), 163905 (2008). [CrossRef] [PubMed]
  12. T. J. Kippenberg, S. M. Spillane, B. Min, and K. J. Vahala, “Theoretical and experimental study of stimulated and cascaded Raman scattering in ultrahigh-Q optical microcavities,” IEEE J. Quantum Electron.10(5), 1219–1228 (2004). [CrossRef]
  13. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem.58(1), 267–297 (2007). [CrossRef] [PubMed]
  14. H. S. Choi, X. Zhang, and A. M. Armani, “Hybrid silica-polymer ultra-high-Q microresonators,” Opt. Lett.35(4), 459–461 (2010). [CrossRef] [PubMed]
  15. M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett.99(7), 073701 (2011). [CrossRef]
  16. J. L. D. -Juarez, G. Kozyreff, and J. Martorell, “Whispering gallery microresonators for second harmonic light generation from a low number of small molecules,” Nature Commun.2, 1–8 (2011).
  17. A. Chiasera, Y. Dumeige, P. Feron, M. Ferrari, Y. Jestin, G. N. Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photonics Rev.4(3), 457–482 (2010). [CrossRef]
  18. A. Garg, R. M. Davis, C. Durak, J. R. Heflin, and H. W. Gibson, “Polar orientation of a pendant anionic chromophore in thick layer-by-layer self-assembled polymeric films,” J. Appl. Phys.104(5), 053116 (2008). [CrossRef]
  19. K. E. Van Cott, M. Guzy, P. Neyman, C. Brands, J. R. Heflin, H. W. Gibson, and R. M. Davis, “Layer-by-layer deposition and ordering of low molecular weight dye molecules for second order nonlinear optics,” Angew. Chem. Int. Ed.41(17), 3236–3238 (2002). [CrossRef]
  20. J. R. Heflin, M. T. Guzy, P. J. Neyman, K. J. Gaskins, C. Brands, Z. Wang, H. W. Gibson, R. M. Davis, and K. E. Van Cott, “Efficient, thermally stable, second order nonlinear optical response in organic hybrid covalent/ionic self-assembled films,” Langmuir22(13), 5723–5727 (2006). [CrossRef] [PubMed]
  21. J. Yi, C.-Y. Jao, I. L. N. Kandas, B. Liu, Y. Xu, and H. D. Robinson, “Irreversible adsorption of gold nanospheres on fiber optical tapers and microspheres,” Appl. Phys. Lett.100(15), 153107 (2012). [CrossRef] [PubMed]
  22. D. W. Vernooy, V. S. Ilchenko, H. Mabuchi, E. W. Streed, and H. J. Kimble, “High-Q measurements of fused-silica microspheres in the near infrared,” Opt. Lett.23(4), 247–249 (1998). [CrossRef] [PubMed]
  23. F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron.26(10), 977–986 (1994). [CrossRef]
  24. C. Daengngam, M. Hofmann, Z. Liu, A. Wang, J. R. Heflin, and Y. Xu, “Demonstration of a cylindrically symmetric second-order nonlinear fiber with self-assembled organic surface layers,” Opt. Express19(11), 10326–10335 (2011). [CrossRef] [PubMed]
  25. S. Arnold, S. I. Shopova, and S. Holler, “Whispering gallery mode bio-sensor for label-free detection of single molecules: thermo-optic vs. reactive mechanism,” Opt. Express18(1), 281–287 (2010). [CrossRef] [PubMed]
  26. J. D. Jackson, Classical electrodynamics, John Wiley & Sons, Inc., 1998.
  27. S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett.28(4), 272–274 (2003). [CrossRef] [PubMed]
  28. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, Inc., 1998).
  29. I. Teraoka and S. Arnold, “Theory of resonance shifts in TE and TM whispering gallery modes by nonradial perturbations for sensing applications,” J. Opt. Soc. Am. B23(7), 1381–1389 (2006). [CrossRef]
  30. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. Lett. B6, 4370–4379 (1972).
  31. L. He, S. K. Ozdemir, J. Zhu, F. Monifi, H. Yilmaz, and L. Yang, “Statistics of multiple-scatterer-induced frequency splitting in whispering gallery microresonators and microlasers,” New J. Phys.15(7), 073030 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited