OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 18 — Sep. 9, 2013
  • pp: 20611–20619

Co-enhancing and -confining the electric and magnetic fields of the broken-nanoring and the composite nanoring by azimuthally polarized excitation

Ping Yu, Shuqi Chen, Jianxiong Li, Hua Cheng, Zhancheng Li, and Jianguo Tian  »View Author Affiliations


Optics Express, Vol. 21, Issue 18, pp. 20611-20619 (2013)
http://dx.doi.org/10.1364/OE.21.020611


View Full Text Article

Enhanced HTML    Acrobat PDF (3345 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a novel broken-nanoring, which can realize strongly localized confinement and highly enhancement for both electric and magnetic fields at two resonant modes excited by normal incident azimuthally polarized light. Two resonant modes of the broken-nanoring are formed by different resonant mechanisms as different resonant lengths. The physical model for two resonant modes is also proposed to explain the mechanisms of the electromagnetic enhancement. The enhancement of the electric and magnetic fields can be further improved by adding a nanoring at the outside of the broken-nanoring to form a composite nanoring, which can freely tune or easily merge the resonant modes of the solitary broken-nanoring while keeping larger enhancement of the electric and magnetic fields.

© 2013 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.2110) Physical optics : Electromagnetic optics
(260.5430) Physical optics : Polarization
(160.3918) Materials : Metamaterials

ToC Category:
Metamaterials

History
Original Manuscript: July 8, 2013
Revised Manuscript: August 11, 2013
Manuscript Accepted: August 19, 2013
Published: August 27, 2013

Citation
Ping Yu, Shuqi Chen, Jianxiong Li, Hua Cheng, Zhancheng Li, and Jianguo Tian, "Co-enhancing and -confining the electric and magnetic fields of the broken-nanoring and the composite nanoring by azimuthally polarized excitation," Opt. Express 21, 20611-20619 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-18-20611


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett.4(5), 957–961 (2004). [CrossRef]
  2. N. Zhou, E. C. Kinzel, and X. Xu, “Complementary bowtie aperture for localizing and enhancing optical magnetic field,” Opt. Lett.36(15), 2764–2766 (2011). [CrossRef] [PubMed]
  3. Z. Gao, L. Shen, E. Li, L. Xu, and Z. Wang, “Cross-diabolo nanoantenna for localizing and enhancing magnetic field with arbitrary polarization,” J. Lightwave Technol.30(6), 829–833 (2012). [CrossRef]
  4. T. Grosjean, M. Mivelle, F. I. Baida, G. W. Burr, and U. C. Fischer, “Diabolo nanoantenna for enhancing and confining the magnetic optical field,” Nano Lett.11(3), 1009–1013 (2011). [CrossRef] [PubMed]
  5. M. Lorente-Crespo, L. Wang, R. Ortuño, C. García-Meca, Y. Ekinci, and A. Martínez, “Magnetic hot spots in closely spaced thick gold nanorings,” Nano Lett.13(6), 2654–2661 (2013). [CrossRef] [PubMed]
  6. T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett.7(1), 28–33 (2007). [CrossRef] [PubMed]
  7. C. Granata, E. Esposito, A. Vettoliere, L. Petti, and M. Russo, “An integrated superconductive magnetic nanosensor for high-sensitivity nanoscale applications,” Nanotechnology19(27), 275501 (2008). [CrossRef] [PubMed]
  8. E. Vourch, P.-Y. Joubert, and L. Cima, “Analytical and numerical analyses of a current sensor using nonlinear effects in a flexible magnetic transducer,” Prog. Electromagnetics Res.99, 323–338 (2009). [CrossRef]
  9. S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature453(7196), 757–760 (2008). [CrossRef] [PubMed]
  10. T. Schumacher, K. Kratzer, D. Molnar, M. Hecntschel, H. Giessen, and M. Lippitz, “Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle,” Nat. Commun.2, 333 (2011). [CrossRef]
  11. M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science313(5786), 502–504 (2006). [CrossRef] [PubMed]
  12. M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photon.5(6), 349–356 (2011). [CrossRef]
  13. K. Wang, E. Schonbrun, P. Steinvuzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun.2, 469 (2011). [CrossRef] [PubMed]
  14. M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science332(6030), 702–704 (2011). [CrossRef] [PubMed]
  15. H. Hong, H.-J. Krause, K. Song, and C.-J. Choi, “In situ analysis of free radicals from the photodecomposition of hydrogen peroxide using a frequency-mixing magnetic detector,” Appl. Phys. Lett.101(5), 054105 (2012). [CrossRef]
  16. Y. Yang, H. T. Dai, and X. W. Sun, “Split ring aperture for optical magnetic field enhancement by radially polarized beam,” Opt. Express21(6), 6845–6850 (2013). [CrossRef] [PubMed]
  17. G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett.9(5), 2139–2143 (2009). [CrossRef] [PubMed]
  18. J. Scheuer, “Ultra-high enhancement of the field concentration in split ring resonators by azimuthally polarized excitation,” Opt. Express19(25), 25454–25464 (2011). [CrossRef]
  19. M. A. Suarez, T. Grosjean, D. Charraut, and D. Courjon, “Nanoring as a magnetic or electric field sensitive nano-antenna for near-field optics applications,” Opt. Commun.270(2), 447–454 (2007). [CrossRef]
  20. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).
  21. COMSOL 3.4, Comsol Multiphysics, http://www.comsol.com .
  22. S. D. Liu, Z. S. Zhang, and Q. Q. Wang, “High sensitivity and large field enhancement of symmetry broken Au nanorings: effect of multipolar plasmon resonance and propagation,” Opt. Express17(4), 2906–2917 (2009). [CrossRef] [PubMed]
  23. J. Li, S. Chen, P. Yu, H. Cheng, W. Zhou, and J. Tian, “Large enhancement and uniform distribution of optical near-field through combining periodic bowtie nanoantenna with rectangular nanoaperture array,” Opt. Lett.36(20), 4014–4016 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited