OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 18 — Sep. 9, 2013
  • pp: 20626–20631

Automatic electronic-controlled mode locking self-start in fibre lasers with non-linear polarisation evolution

Daba Radnatarov, Sergey Khripunov, Sergey Kobtsev, Aleksey Ivanenko, and Sergey Kukarin  »View Author Affiliations

Optics Express, Vol. 21, Issue 18, pp. 20626-20631 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1148 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The present work demonstrates a fibre-laser system with automatic electronic-controlled triggering of dissipative soliton generation mode. Passive mode locking based on the effect of non-linear polarisation evolution has been achieved through a polarisation controller containing a single low-voltage liquid crystal plate whose optimal wave delay was determined from analysis of inter-mode beat spectrum of the output radiation.

© 2013 OSA

OCIS Codes
(140.4050) Lasers and laser optics : Mode-locked lasers
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(230.3720) Optical devices : Liquid-crystal devices

ToC Category:
Lasers and Laser Optics

Original Manuscript: July 22, 2013
Revised Manuscript: August 11, 2013
Manuscript Accepted: August 11, 2013
Published: August 27, 2013

Daba Radnatarov, Sergey Khripunov, Sergey Kobtsev, Aleksey Ivanenko, and Sergey Kukarin, "Automatic electronic-controlled mode locking self-start in fibre lasers with non-linear polarisation evolution," Opt. Express 21, 20626-20631 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, “Self-starting, passively mode-locked fibre ring soliton laser exploiting non-linear polarisation rotation,” Electron. Lett.28(15), 1391–1393 (1992). [CrossRef]
  2. M. E. Fermann, Nonlinear polarization evolution in passively mode-locked fiber lasers (Cambridge University Press, 1995), Chapter 5.
  3. B. Oktem, C. Ülgüdür, and Ö. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics4(5), 307–311 (2010), http://www.nature.com/nphoton/journal/v4/n5/full/nphoton.2010.33.html . [CrossRef]
  4. S. V. Smirnov, S. M. Kobtsev, S. V. Kukarin, and S. K. Turitsyn, Mode-Locked Fibre Lasers with High-Energy Pulses (InTech, 2011), Chapter 3.
  5. W. H. Renninger and F. W. Wise, Dissipative soliton fiber lasers (Wiley-VCH Verlag GmbH & Co. KgaA, 2012), Chapter 4.
  6. F. Ilday, J. Buckley, L. Kuznetsova, and F. Wise, “Generation of 36-femtosecond pulses from a ytterbium fiber laser,” Opt. Express11(26), 3550–3554 (2003). [CrossRef] [PubMed]
  7. S. Kobtsev, S. Kukarin, and Y. Fedotov, “Ultra-low repetition rate mode-locked fiber laser with high-energy pulses,” Opt. Express16(26), 21936–21941 (2008). [CrossRef] [PubMed]
  8. L. M. Zhao, D. Y. Tang, T. H. Cheng, and C. Lu, “Nanosecond square pulse generation in fiber lasers with normal dispersion,” Opt. Commun.272(2), 431–434 (2007), http://www.sciencedirect.com/science/article/pii/S0030401806012879 . [CrossRef]
  9. T. Hirooka and M. Nakazawa, “Parabolic pulse generation by use of a dispersion-decreasing fiber with normal group-velocity dispersion,” Opt. Lett.29(5), 498–500 (2004). [CrossRef] [PubMed]
  10. B. Ortaç, A. Hideur, M. Brunel, C. Chédot, J. Limpert, A. Tünnermann, and F. Ö. Ilday, “Generation of parabolic bound pulses from a Yb-fiber laser,” Opt. Express14(13), 6075–6083 (2006). [CrossRef] [PubMed]
  11. J. M. Soto-Crespo, P. Grelu, N. Akhmediev, and N. Devine, “Soliton complexes in dissipative systems: vibrating, shaking, and mixed soliton pairs,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.75(1), 016613 (2007). [CrossRef] [PubMed]
  12. W. H. Renninger, A. Chong, and F. W. Wise, “Pulse shaping and evolution in normal-dispersion mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron.18(1), 389–398 (2012). [CrossRef] [PubMed]
  13. S. Smirnov, S. Kobtsev, S. Kukarin, and A. Ivanenko, “Three key regimes of single pulse generation per round trip of all-normal-dispersion fiber lasers mode-locked with nonlinear polarization rotation,” Opt. Express20(24), 27447–27453 (2012). [CrossRef] [PubMed]
  14. P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics6(2), 84–92 (2012), http://www.nature.com/nphoton/journal/v6/n2/abs/nphoton.2011.345.html?WT.mc_id=TWT_NaturePhotonics . [CrossRef]
  15. N. Imoto, N. Yoshizawa, J. Sakai, and H. Tsuchiya, “Birefringence in single-mode optical fiber due to elliiptical core deformation and stress anisotropy,” IEEE J. Quantum Electron.16(11), 1267–1271 (1980). [CrossRef]
  16. E. Collett, Polarization Controllers, (The PolaWave Group, 2003), Chapter 9.
  17. A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express14(21), 10095–10100 (2006). [CrossRef] [PubMed]
  18. A. Yariv and A. Yariv, Optical waves in crystals: propagation and control of laser radiation, Wiley-Interscience, 2002.
  19. Z. Zhuang, S. W. Suh, and J. S. Patel, “Polarization controller using nematic liquid crystals,” Opt. Lett.24(10), 694–696 (1999). [CrossRef] [PubMed]
  20. S. M. Kelly and M. O’Neill, Liquid crystals for electro-optic applications (Academic Press, 2000), Chapter 1.
  21. A. Safrani and I. Abdulhalim, “Liquid-crystal polarization rotator and a tunable polarizer,” Opt. Lett.34(12), 1801–1803 (2009). [CrossRef] [PubMed]
  22. L. Wei, T. T. Alkeskjold, and A. Bjarklev, “Tunable and rotatable polarization controller using photonic crystal fiber filled with liquid crystal,” Appl. Phys. Lett.96(24), 241104 (2010), http://apl.aip.org/resource/1/applab/v96/i24/p241104_s1?bypassSSO=1 . [CrossRef]
  23. A. K. Pitilakis, D. C. Zografopoulos, and E. E. Kriezis, “In-line polarization controller based on liquid-crystal photonic crystal fibers,” J. Lightwave Technol.29(17), 2560–2569 (2011). [CrossRef]
  24. D. A. Radnatarov, S. A. Khripunov, A. V. Ivanenko, and S. M. Kobtsev, “Mode-locked Er fibre laser with variable wave plate based on liquid crystal,” in ICONO/LAT-2013 Conference, Technical Digest (CD) (Russian Academy of Sciences, Moscow, 2013), paper LWF2.
  25. N. N. Akhmediev and A. Ankiewicz, Dissipative Solitons, Springer, 2005.
  26. A. Chong, W. H. Renninger, and F. W. Wise, “Propeties of normal-dispersion femtosecond fiber lasers,” J. Opt. Soc. Am. B25(2), 140–148 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited