OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 18 — Sep. 9, 2013
  • pp: 20656–20674

Mie scattering from submicron-sized CO2 clusters formed in a supersonic expansion of a gas mixture

S. Jinno, Y. Fukuda, H. Sakaki, A. Yogo, M. Kanasaki, K. Kondo, A.Ya. Faenov, I.Yu. Skobelev, T.A. Pikuz, A.S. Boldarev, and V.A. Gasilov  »View Author Affiliations


Optics Express, Vol. 21, Issue 18, pp. 20656-20674 (2013)
http://dx.doi.org/10.1364/OE.21.020656


View Full Text Article

Enhanced HTML    Acrobat PDF (3388 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A detailed mathematical model is presented for a submicron-sized cluster formation in a binary gas mixture flowing through a three-staged conical nozzle. By measuring the angular distribution of light scattered from the clusters, the size of CO2 clusters, produced in a supersonic expansion of the mixture gas of CO2(30%)/H2(70%) or CO2(10%)/He(90%), has been evaluated using the Mie scattering method. The mean sizes of CO2 clusters are estimated to be 0.28 ± 0.03 μm for CO2/H2 and 0.26 ± 0.04 μm for CO2/He, respectively. In addition, total gas density profiles in radial direction of the gas jet, measuring the phase shift of the light passing through the target by utilizing an interferometer, are found to be agreed with the numerical modeling within a factor of two. The dryness (= monomer/(monomer + cluster) ratio) in the targets is found to support the numerical modeling. The apparatus developed to evaluate the cluster-gas targets proved that our mathematical model of cluster formation is reliable enough for the binary gas mixture.

© 2013 OSA

OCIS Codes
(000.6850) General : Thermodynamics
(290.4020) Scattering : Mie theory
(110.3175) Imaging systems : Interferometric imaging

ToC Category:
Scattering

History
Original Manuscript: June 19, 2013
Revised Manuscript: July 25, 2013
Manuscript Accepted: August 7, 2013
Published: August 27, 2013

Citation
S. Jinno, Y. Fukuda, H. Sakaki, A. Yogo, M. Kanasaki, K. Kondo, A.Ya. Faenov, I.Yu. Skobelev, T.A. Pikuz, A.S. Boldarev, and V.A. Gasilov, "Mie scattering from submicron-sized CO2 clusters formed in a supersonic expansion of a gas mixture," Opt. Express 21, 20656-20674 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-18-20656


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Fennel, K.-H. Meiwes-Broer, J. Tiggesbäumker, P.-G. Reinhard, P. M. Dinh, and E. Suraud, “Laser-driven nonlinear cluster dynamics,” Rev. Mod. Phys.82, 1793–1842 (2010). [CrossRef]
  2. T. Ditmire, J. Zweiback, V. P. Yanovsky, T. E. Cowan, G. Hays, and K. B. Wharton, “Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters,” Nature398, 489–492 (1999). [CrossRef]
  3. E. Parra, I. Alexeev, J. Fan, K. Y. Kim, S. J. McNaught, and H. M. Milchberg, “X-ray and extreme ultraviolet emission induced by variable pulse-width irradiation of Ar and Kr clusters and droplets,” Phys. Rev. E62, R5931–R5934 (2000). [CrossRef]
  4. Y. Fukuda, Y. Akahane, M. Aoyama, N. Inoue, H. Ueda, Y. Nakai, K. Tsuji, K. Yamanaka, Y. Hironaka, H. Kishimura, H. Morishita, K. Kondo, and K. G. Nakamura, “Relativistic laser plasma from micron-sized argon clusters as a debris-free x-ray source for pulse x-ray diffraction,” Appl. Phys. Lett.85, 5099–5101 (2004). [CrossRef]
  5. L. M. Chen, W. C. Yan, D. Z. Li, Z. D. Hu, L. Zhang, W. M. Wang, N. Hafz, J. Y. Mao, K. Huang, Y. Ma, J. R. Zhao, J. L. Ma, Y. T. Li, X. Lu, Z. M. Sheng, Z. Y. Wei, J. Gao, and J. Zhang, “Bright betatron X-ray radiation from a laser-driven-clustering gas target,” Sci. Rep.3, 1912 (2013).
  6. Y. Fukuda, A. Y. Faenov, M. Tampo, T. A. Pikuz, T. Nakamura, M. Kando, Y. Hayashi, A. Yogo, H. Sakaki, T. Kameshima, A. S. Pirozhkov, K. Ogura, M. Mori, T. Z. Esirkepov, J. Koga, A. S. Boldarev, V. A. Gasilov, A. I. Magunov, T. Yamauchi, R. Kodama, P. R. Bolton, Y. Kato, T. Tajima, H. Daido, and S. V. Bulanov, “Energy increase in multi-MeV ion acceleration in the interaction of a short pulse laser with a cluster-gas target,” Phys. Rev. Lett.103, 165002 (2009). [CrossRef] [PubMed]
  7. Y. Fukuda, H. Sakaki, M. Kanasaki, A. Yogoa, S. Jinno, M. Tampo, A. Faenov, T. Pikuz, Y. Hayashi, M. Kando, A. Pirozhkov, T. Shimomura, H. Kiriyama, S. Kurashima, T. Kamiya, K. Oda, T. Yamauchi, K. Kondo, and S. Bulanov, “Identification of high energy ions using backscattered particles in laser-driven ion acceleration with cluster-gas targets,” Radiat. Meas.50, 92–96 (2013). [CrossRef]
  8. A. S. Boldarev, V. A. Gasilov, A. Y. Faenov, Y. Fukuda, and K. Yamakawa, “Gas-cluster targets for femtosecond laser interaction: Modeling and optimization,” Rev. Sci. Instrum.77, 083112 (2006). [CrossRef]
  9. Y. Fukuda, A. Y. Faenov, T. Pikuz, M. Kando, H. Kotaki, I. Daito, J. Ma, L. M. Chen, T. Homma, K. Kawase, T. Kameshima, T. Kawachi, H. Daido, T. Kimura, T. Tajima, Y. Kato, and S. V. Bulanov, “Soft x-ray source for nanostructure imaging using femtosecond-laser-irradiated clusters,” Appl. Phys. Lett.92, 121110 (2008). [CrossRef]
  10. S. Jinno, Y. Fukuda, H. Sakaki, A. Yogo, M. Kanasaki, K. Kondo, A. Y. Faenov, I. Y. Skebelv, T. A. Pikuz, A. S. Boldarev, and V. A. Gasilov, “Characterization of submicron-sized CO2clusters formed with a supersonic expansion of a mixed-gas using a three-staged nozzle,” Appl. Phys. Lett.102, 164103 (2013). [CrossRef]
  11. X. Gao, X. Wang, B. Shim, A. V. Arefiev, R. Korzekwa, and M. C. Downer, “Characterization of cluster/monomer ratio in pulsed supersonic gas jets,” Appl. Phys. Lett.100, 064101 (2012). [CrossRef]
  12. A. S. Boldarev, V. A. Gasilov, and A. Y. Faenov, “On the generation of large clusters in forming gas-jet targets for lasers,” Tech. Phys.49, 388 (2004). [CrossRef]
  13. http://webbook.nist.gov/chemistry/fluid .
  14. W. J. Wiscombe, “Mie scattering calculations: Advances in technique and fast, vector-speed computer codes,” Ncar technical note 140+STR1979 (edited/revised 1996).
  15. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic Press, New York and London, 1969).
  16. R. Álvarez, A. Rodero, and M. C. Quintero, “An abel inversion method for radially resolved measurements in the axial injection torch,” Spectrochim. Acta Part B52, 1665 (2002). [CrossRef]
  17. H. M. Milchberg, S. J. McNaught, and E. Parra, “Plasma hydrodynamics of the intense laser-cluster interaction,” Phys. Rev. E64, 056402 (2001). [CrossRef]
  18. H.-Y. Kim, J. O. Sofo, D. Velegol, M. W. Cole, and G. Mukhopadhyay, “Static polarizabilities of dielectric nanoclusters,” Phys. Rev. A72, 053201 (2005). [CrossRef]
  19. D. R. Lide, ed., Handbook of Chemistry and Physics, 88th edition(CRC, New York, 1997).
  20. G. Maroulis and A. J. Thakkar, “Polarizabilities and hyperpolarizabilities of carbon dioxide,” J. Chem. Phys.93, 4164–4171 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited