OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 18 — Sep. 9, 2013
  • pp: 20683–20691

Deep sub-wavelength imaging lithography by a reflective plasmonic slab

Changtao Wang, Ping Gao, Zeyu Zhao, Na Yao, Yanqin Wang, Ling Liu, Kaipeng Liu, and Xiangang Luo  »View Author Affiliations


Optics Express, Vol. 21, Issue 18, pp. 20683-20691 (2013)
http://dx.doi.org/10.1364/OE.21.020683


View Full Text Article

Enhanced HTML    Acrobat PDF (2570 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

By utilizing a reflective plasmonic slab, it is demonstrated numerically and experimentally in this paper deep sub-wavelength imaging lithography for nano characters with about 50nm line width and dense lines with 32nm half pitch resolution (about 1/12 wavelength). Compared with the control experiment without reflective plasmonic slab, resolution and fidelity of imaged resist patterns are remarkably improved especially for isolated nano features. Further numerical simulations show that near field optical proximity corrections help to improve imaging fidelity of two dimensional nano patterns.

© 2013 OSA

OCIS Codes
(100.6640) Image processing : Superresolution
(110.5220) Imaging systems : Photolithography
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics

ToC Category:
Imaging Systems

History
Original Manuscript: June 25, 2013
Revised Manuscript: August 10, 2013
Manuscript Accepted: August 13, 2013
Published: August 27, 2013

Citation
Changtao Wang, Ping Gao, Zeyu Zhao, Na Yao, Yanqin Wang, Ling Liu, Kaipeng Liu, and Xiangang Luo, "Deep sub-wavelength imaging lithography by a reflective plasmonic slab," Opt. Express 21, 20683-20691 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-18-20683


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000). [CrossRef] [PubMed]
  2. R. J. Blaikie, M. M. Alkaisi, S. J. McNab, D. R. S. Cumming, R. Cheung, and D. G. Hasko, “Nanolithography using optical contact exposure in the evanescent near field,” Microelectron. Eng.46(1-4), 85–88 (1999). [CrossRef]
  3. M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett.75(22), 3560–3562 (1999). [CrossRef]
  4. X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett.84(23), 4780–4782 (2004). [CrossRef]
  5. Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett.5(5), 957–961 (2005). [CrossRef] [PubMed]
  6. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308(5721), 534–537 (2005). [CrossRef] [PubMed]
  7. D. O. S. Melville and R. J. Blaikie, “Super-resolution imaging through a planar silver layer,” Opt. Express13(6), 2127–2134 (2005). [CrossRef] [PubMed]
  8. T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science313(5793), 1595 (2006). [CrossRef] [PubMed]
  9. D. B. Shao and S. C. Chen, “Surface-plasmon-assisted nanoscale photolithography by polarized light,” Appl. Phys. Lett.86(25), 253107 (2005). [CrossRef]
  10. D. B. Shao and S. C. Chen, “Numerical simulation of surface-plasmon-assisted nanolithography,” Opt. Express13(18), 6964–6973 (2005). [CrossRef] [PubMed]
  11. M. D. Arnold and R. J. Blaikie, “Subwavelength optical imaging of evanescent fields using reflections from plasmonic slabs,” Opt. Express15(18), 11542–11552 (2007). [CrossRef] [PubMed]
  12. T. Xu, L. Fang, J. Ma, B. Zeng, Y. Liu, J. Cui, C. Wang, Q. Feng, and X. Luo, “Localizing surface plasmons with a metal-cladding superlens for projecting deep-subwavelength patterns,” Appl. Phys. B97(1), 175–179 (2009). [CrossRef]
  13. C. W. Holzwarth, J. E. Foulkes, and R. J. Blaikie, “Increased process latitude in absorbance-modulated lithography via a plasmonic reflector,” Opt. Express19(18), 17790–17798 (2011). [CrossRef] [PubMed]
  14. G. Ren, C. Wang, G. Yi, X. Tao, and X. Luo, “Subwavelength demagnification imaging and lithography using hyperlens with a plasmonic reflector layer,” Plasmonics8(2), 1065–1072 (2013). [CrossRef]
  15. Jianjie Dong, Juan Liu, Xingxing Zhao, and Peng Liu, “A super lens system for demagnification imaging beyond the diffraction limit,” Plasmonics (2013). [CrossRef]
  16. P. B. Johnson and R. W. Christy, “Optical constants of the noble metal,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  17. V. Intaraprasonk, Z. Yu, and S. Fan, “Image transfer with subwavelength resolution to metal–dielectric interface,” J. Opt. Soc. Am. B28(5), 1335–1338 (2011). [CrossRef]
  18. Marvin J. Weber, Handbook of Optical Materials (CRC Press, 2003).
  19. X. Guo, J. Du, Y. Guo, and J. Yao, “Large-area surface-plasmon polariton interference lithography,” Opt. Lett.31(17), 2613–2615 (2006). [CrossRef] [PubMed]
  20. B. B. Zeng, L. Pan, L. Liu, L. Fang, C. Wang, and X. Luo, “Improved near field lithography by surface plasmon resonance in groove-patterned masks,” J. Opt. A, Pure Appl. Opt.11(12), 125003 (2009). [CrossRef]
  21. D. Shao and S. Chen, “Surface plasmon assisted contact scheme nanoscale photolithography,” J. Vac. Sci. Technol. B26(1), 227–231 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited