OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 18 — Sep. 9, 2013
  • pp: 20713–20721

Two-photon lensless endoscope

Esben Ravn Andresen, Géraud Bouwmans, Serge Monneret, and Hervé Rigneault  »View Author Affiliations

Optics Express, Vol. 21, Issue 18, pp. 20713-20721 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1437 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a first demonstration of two-photon endoscopic imaging with a lensless endoscope. The endoscope probe is a double-clad bundle of single-mode fibers; point excitation and scanning is achieved by coherent combining of femtosecond light pulses propagating in the single-mode fibers; and back-scattered two-photon signal is collected through the multi-mode inner cladding. We demonstrate the two-photon endoscope on a test sample of rhodamine 6G crystals.

© 2013 OSA

OCIS Codes
(060.2430) Fiber optics and optical communications : Fibers, single-mode
(170.2150) Medical optics and biotechnology : Endoscopic imaging
(180.2520) Microscopy : Fluorescence microscopy
(180.5810) Microscopy : Scanning microscopy
(230.6120) Optical devices : Spatial light modulators
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:

Original Manuscript: July 1, 2013
Revised Manuscript: August 1, 2013
Manuscript Accepted: August 4, 2013
Published: August 27, 2013

Virtual Issues
Vol. 8, Iss. 10 Virtual Journal for Biomedical Optics

Esben Ravn Andresen, Géraud Bouwmans, Serge Monneret, and Hervé Rigneault, "Two-photon lensless endoscope," Opt. Express 21, 20713-20721 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. F. Elahi and T. D. Wang, “Future and advances in endoscopy,” J. Biomed. Opt.4, 471–481 (2011).
  2. I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “High-resolution, lensless endoscope based on digital scanning through a multimode fiber,” Biomed. Opt. Express6, 260–270 (2013). [CrossRef]
  3. T. Cizmar and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun.3, 1027 (2012). [CrossRef] [PubMed]
  4. Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-Free and Wide-Field Endoscopic Imaging by Using a Single Multimode Optical Fiber,” Phys. Rev. Lett.109, 203901 (2012). [CrossRef] [PubMed]
  5. C. LeFort, T. Mansuryan, F. Louradour, and A. Barthelemy, “Pulse compression and fiber delivery of 45 fs Fourier transform limited pulses at 830nm,” Opt. Lett.36, 292–294 (2011). [CrossRef] [PubMed]
  6. D. R. Rivera, C. M. Brown, D. G. Ouzounov, I. Pavlova, D. Kobat, W. W. Webb, and C. Xu, “Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue,” Proc. Natl. Acad. Sci. U.S.A.108, 17598–17603 (2011). [CrossRef] [PubMed]
  7. C. M. Brown, D. R. Rivera, I. Pavlova, D. G. Ouzonov, W. O. Williams, S. Mohanan, W. W. Webb, and C. Xu, “In vivo imaging of unstained tissues using a compact and flexible multiphoton microendoscope,” J. Biomed. Opt.17, 040505 (2012). [CrossRef] [PubMed]
  8. Y. Wu, Y. Leng, J. Xi, and X. Li, “Scanning all-fiber-optic endomicroscopy system for 3D nonlinear optical imaging of biological tissues,” Opt. Express17, 7907–7915 (2009). [CrossRef] [PubMed]
  9. S. Tang, W. G. Jung, D. McCormick, T. Q. Xie, J. P. Su, Y. C. Ahn, B. J. Tromberg, and Z. P. Chen, “Design an implementation of fiber-based multiphoton endoscopy with microelectromechanical systems scanning,” J. Biomed. Opt.14, 34005 (2009). [CrossRef]
  10. H. Bao, A. Boussioutas, R. Jeremy, S. Russell, and M. Gu, “Second harmonic generation imaging via nonlinear endomicroscopy,” Opt. Express18, 1255–1260 (2010). [CrossRef] [PubMed]
  11. H. Bao, J. Allen, R. Pattie, R. Vance, and M. Gu, “Fast handheld two-photon fluorescence microendoscope with a 475 × 475 μ m field of view for in vivo imaging,” Opt. Lett.33, 1333–1335 (2008). [CrossRef] [PubMed]
  12. M. R. Myaing, D. J. MacDonald, and X. Li, “Fiber-optic scanning two-photon fluorescence endoscope,” Opt. Lett.31, 1076–1078 (2006). [CrossRef] [PubMed]
  13. L. Fu, A. Jain, H. Xie, C. Cranfield, and M. Gu, “Nonlinear optical endoscopy based on a double-clad photonic crystal fiber and a MEMS mirror,” Opt. Express14, 1027–1032 (2006). [CrossRef] [PubMed]
  14. B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods2, 941–950 (2005). [CrossRef] [PubMed]
  15. T. Y. Fan, “Laser beam combining for high-power, high radiance sources,” IEEE J. Sel. Top. Quantum Electron.11, 567–577 (2005). [CrossRef]
  16. C. Labaune, D. Hulin, A. Galvanauskas, and G. Mourou, “On the feasability of a fiber-based inertial fusion laser driver,” Opt. Commun.281, 4075–4080 (2008). [CrossRef]
  17. J. Bourderionnet, C. Bellanger, J. Primot, and A. Brignon, “Collective coherent phase combining of 64 fibers,” Opt. Express19, 17053–17058 (2011). [CrossRef] [PubMed]
  18. A. J. Thompson, C. Paterson, M. A. A. Neil, C. Dunsby, and P. M. W. French, “Adaptive phase compensation for ultracompact laser scanning endomicroscopy,” Opt. Lett.36, 1707–1709 (2011). [CrossRef] [PubMed]
  19. E. R. Andresen, G. Bouwmans, S. Monneret, and H. Rigneault, “Toward endoscopes with no distal optics: video-rate scanning microscopy through a fiber bundle,” Opt. Lett.38, 609–611 (2013). [CrossRef] [PubMed]
  20. D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics7, 354–362 (2013). [CrossRef]
  21. P. S. J. Russell, “Photonic-Crystal Fibers,” J. Lightwave Technol.24, 4729–4749 (2006). [CrossRef]
  22. J. Tang, R. N. Germain, and M. Cui, “Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique,” Proc. Natl. Acad. Sci. U.S.A.109, 8434–8439 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited