OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 18 — Sep. 9, 2013
  • pp: 20762–20770

Efficient transition between photonic and plasmonic guided modes at abrupt junction of MIM plasmonic waveguide

Seung-Yeol Lee, Joonsoo Kim, Il-Min Lee, and Byoungho Lee  »View Author Affiliations

Optics Express, Vol. 21, Issue 18, pp. 20762-20770 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3317 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a novel metal-insulator-metal (MIM) waveguide mode transition scheme by the use of the abrupt junction of MIM plasmonic waveguide. Power coupling between anti-symmetric plasmonic mode and fundamental photonic mode can be easily done by reflection at the waveguide junction with an oblique MIM mode incidence due to the field intersection between those modes. With numerical simulation we find that mode conversion efficiency can be obtained up to 60% for single junction geometry, and it can be further increased up to 82% with the suppression of non-transited mode by adapting Bragg grating structure composed of periodical arranges of MIM junctions.

© 2013 OSA

OCIS Codes
(130.2790) Integrated optics : Guided waves
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Integrated Optics

Original Manuscript: June 24, 2013
Revised Manuscript: August 14, 2013
Manuscript Accepted: August 17, 2013
Published: August 28, 2013

Seung-Yeol Lee, Joonsoo Kim, Il-Min Lee, and Byoungho Lee, "Efficient transition between photonic and plasmonic guided modes at abrupt junction of MIM plasmonic waveguide," Opt. Express 21, 20762-20770 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Raether, Surface Plasmons (Springer-Verlag, 1988).
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003). [CrossRef] [PubMed]
  3. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B72(7), 075405 (2005). [CrossRef]
  4. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chipscale propagation with subwavelength-scale localization,” Phys. Rev. B73(3), 035407 (2006). [CrossRef]
  5. J. Park, H. Kim, I.-M. Lee, S. Kim, J. Jung, and B. Lee, “Resonant tunneling of surface plasmon polariton in the plasmonic nano-cavity,” Opt. Express16(21), 16903–16915 (2008). [CrossRef] [PubMed]
  6. J. Park, H. Kim, and B. Lee, “High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating,” Opt. Express16(1), 413–425 (2008). [CrossRef] [PubMed]
  7. K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature450(7168), 397–401 (2007). [CrossRef] [PubMed]
  8. J. Park, K.-Y. Kim, I.-M. Lee, H. Na, S.-Y. Lee, and B. Lee, “Trapping light in plasmonic waveguides,” Opt. Express18(2), 598–623 (2010). [CrossRef] [PubMed]
  9. J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett.9(2), 897–902 (2009). [CrossRef] [PubMed]
  10. H. Shin and S. Fan, “All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure,” Phys. Rev. Lett.96(7), 073907 (2006). [CrossRef] [PubMed]
  11. H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science316(5823), 430–432 (2007). [CrossRef] [PubMed]
  12. Y. Lim, S.-Y. Lee, K.-Y. Kim, J. Park, and B. Lee, “Negative refraction of Airy plasmons in a metal-insulator-metal waveguide,” IEEE Photon. Technol. Lett.23(17), 1258–1260 (2011). [CrossRef]
  13. C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett.10(8), 2922–2926 (2010). [CrossRef] [PubMed]
  14. R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, “Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides,” Nano Lett.10(12), 4851–4857 (2010). [CrossRef] [PubMed]
  15. S.-Y. Lee, J. Park, M. Kang, and B. Lee, “Highly efficient plasmonic interconnector based on the asymmetric junction between metal-dielectric-metal and dielectric slab waveguides,” Opt. Express19(10), 9562–9574 (2011). [CrossRef] [PubMed]
  16. J. Chen, Z. Li, S. Yue, J. Xiao, and Q. Gong, “Plasmon-induced transparency in asymmetric T-shape single slit,” Nano Lett.12(5), 2494–2498 (2012). [CrossRef] [PubMed]
  17. Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics3(2), 91–94 (2009). [CrossRef]
  18. H. Lira, Z. Yu, S. Fan, and M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett.109(3), 033901 (2012). [CrossRef] [PubMed]
  19. H. Kim and B. Lee, “Efficient frequency conversion in slab waveguide by cascaded nonreciprocal interband photonic transitions,” Opt. Lett.35(19), 3165–3167 (2010). [CrossRef] [PubMed]
  20. S.-H. Kim, R. Takei, Y. Shoji, and T. Mizumoto, “Single-trench waveguide TE-TM mode converter,” Opt. Express17(14), 11267–11273 (2009). [CrossRef] [PubMed]
  21. R. Ameling and H. Giessen, “Cavity plasmonics: large normal mode splitting of electric and magnetic particle plasmons induced by a photonic microcavity,” Nano Lett.10(11), 4394–4398 (2010). [CrossRef] [PubMed]
  22. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009). [CrossRef] [PubMed]
  23. M. A. Ordal, R. J. Bell, R. W. Alexander,, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Appl. Opt.24(24), 4493–4499 (1985). [CrossRef] [PubMed]
  24. T. Chung, S.-Y. Lee, H. Yun, S.-W. Cho, Y. Lim, I.-M. Lee, and B. Lee, “Plasmonics in nanoslit for manipulation of light,” IEEE Access1, 371–383 (2013). [CrossRef]
  25. J. Chen, G. A. Smolyakov, S. R. J. Brueck, and K. J. Malloy, “Surface plasmon modes of finite, planar, metal-insulator-metal plasmonic waveguides,” Opt. Express16(19), 14902–14909 (2008). [CrossRef] [PubMed]
  26. S.-Y. Lee, J. Park, I. Woo, N. Park, and B. Lee, “Surface plasmon beam splitting by the photon tunneling through the plasmonic nanogap,” Appl. Phys. Lett.97(13), 133113 (2010). [CrossRef]
  27. H. Kim, I.-M. Lee, and B. Lee, “Extended scattering-matrix method for efficient full parallel implementation of rigorous coupled-wave analysis,” J. Opt. Soc. Am. A24(8), 2313–2327 (2007). [CrossRef] [PubMed]
  28. H. Kim, J. Park, and B. Lee, Fourier Modal Method and Its Applications in Computational Nanophotonics (CRC Press, 2012).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited