OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 18 — Sep. 9, 2013
  • pp: 20771–20785

Trapping mid-infrared rays in a lossy film with the Berreman mode, epsilon near zero mode, and magnetic polaritons

Yu-Bin Chen and Feng-Cheng Chiu  »View Author Affiliations


Optics Express, Vol. 21, Issue 18, pp. 20771-20785 (2013)
http://dx.doi.org/10.1364/OE.21.020771


View Full Text Article

Enhanced HTML    Acrobat PDF (3094 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Triple mechanisms were employed to trap mid-infrared (mid-IR) rays within a semi-transparent SiO2 film sandwiched between gold gratings and a gold substrate. Dimensions of four absorbers were explicitly determined using an LC (inductor-capacitor) circuit model considering the role transition of SiO2 film. The film behaves as a capacitance and an inductance when the real part of relative electric permittivity for SiO2 is positive and negative, respectively. At the normal incidence of transverse magnetic waves, every absorptance spectrum of absorbers showed a peak at wavelength λ = 10 μm due to the first mode excitation of magnetic polaritons (MP). At oblique incidence, the Berreman mode led to another peak at λ = 8 μm while its bandwidth was expanded with epsilon near zero mode excited by diffracted waves. The full-width-at-half-maximum of both peaks exceeded 0.6 μm thanks to the SiO2 loss. Other minor absorptance peaks in the mid-IR were caused by variants of the same MP mode.

© 2013 OSA

OCIS Codes
(240.5420) Optics at surfaces : Polaritons
(260.3060) Physical optics : Infrared
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Optics at Surfaces

History
Original Manuscript: July 15, 2013
Revised Manuscript: August 20, 2013
Manuscript Accepted: August 20, 2013
Published: August 28, 2013

Citation
Yu-Bin Chen and Feng-Cheng Chiu, "Trapping mid-infrared rays in a lossy film with the Berreman mode, epsilon near zero mode, and magnetic polaritons," Opt. Express 21, 20771-20785 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-18-20771


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. P. Sergeant, M. Agrawal, and P. Peumans, “High performance solar-selective absorbers using coated sub-wavelength gratings,” Opt. Express18(6), 5525–5540 (2010). [CrossRef] [PubMed]
  2. S. Ogawa, K. Okada, N. Fukushima, and M. Kimata, “Wavelength selective uncooled infrared sensor by plasmonics,” Appl. Phys. Lett.100(2), 021111 (2012). [CrossRef]
  3. M. F. Modest, Radiative Heat Transfer (McGraw-Hill, 1993).
  4. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329(5994), 930–933 (2010). [CrossRef] [PubMed]
  5. M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics6(8), 535–539 (2012). [CrossRef]
  6. X. L. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett.104(20), 207403 (2010). [CrossRef] [PubMed]
  7. N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B79(12), 125104 (2009). [CrossRef]
  8. T. Li, S. M. Wang, H. Liu, J. Q. Li, F. M. Wang, S. N. Zhu, and X. Zhang, “Dispersion of magnetic plasmon polaritons in perforated trilayer metamaterials,” J. Appl. Phys.103(2), 023104 (2008). [CrossRef]
  9. L. P. Wang and Z. M. Zhang, “Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics,” Appl. Phys. Lett.100(6), 063902 (2012). [CrossRef]
  10. G. G. Kang, I. Vartiainen, B. F. Bai, and J. Turunen, “Enhanced dual-band infrared absorption in a Fabry-Perot cavity with subwavelength metallic grating,” Opt. Express19(2), 770–778 (2011). [CrossRef] [PubMed]
  11. L. P. Wang, S. Basu, and Z. M. Zhang, “Direct measurement of thermal emission from a Fabry-Perot cavity resonator,” J. Heat Transfer134(7), 072701 (2012). [CrossRef]
  12. H. Sai, Y. Kanamori, and H. Yugami, “Tuning of the thermal radiation spectrum in the near-infrared region by metallic surface microstructures,” J. Micromech. Microeng.15(9), S243–S249 (2005). [CrossRef]
  13. S. Glasberg, A. Sharon, D. Rosenblatt, and A. A. Friesem, “Long-range surface plasmon resonances in grating-waveguide structures,” Appl. Phys. Lett.70(10), 1210–1212 (1997). [CrossRef]
  14. J. Le Gall, M. Olivier, and J. J. Greffet, “Experimental and theoretical study of reflection and coherent thermal emission by a SiC grating supporting a surface-phonon polariton,” Phys. Rev. B55(15), 10105–10114 (1997). [CrossRef]
  15. C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, Y. T. Chang, S. C. Lee, and D. P. Tsai, “Reflection and emission properties of an infrared emitter,” Opt. Express15(22), 14673–14678 (2007). [CrossRef] [PubMed]
  16. J. M. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B83(16), 165107 (2011). [CrossRef]
  17. Y.-B. Chen, J.-S. Chen, and P. F. Hsu, “Impacts of geometric modifications on infrared optical responses of metallic slit arrays,” Opt. Express17(12), 9789–9803 (2009). [CrossRef] [PubMed]
  18. C. G. Hu, L. Y. Liu, Z. Y. Zhao, X. N. Chen, and X. G. Luo, “Mixed plasmons coupling for expanding the bandwidth of near-perfect absorption at visible frequencies,” Opt. Express17(19), 16745–16749 (2009). [CrossRef] [PubMed]
  19. L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S. N. Luo, A. J. Taylor, and H. T. Chen, “Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band,” Opt. Lett.37(2), 154–156 (2012). [CrossRef] [PubMed]
  20. J. Chen, P. Wang, Z. M. Zhang, Y. Lu, and H. Ming, “Coupling between gap plasmon polariton and magnetic polariton in a metallic-dielectric multilayer structure,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.84(2), 026603 (2011). [CrossRef] [PubMed]
  21. J. Q. Wang, C. Z. Fan, P. Ding, J. N. He, Y. G. Cheng, W. Q. Hu, G. W. Cai, E. J. Liang, and Q. Z. Xue, “Tunable broad-band perfect absorber by exciting of multiple plasmon resonances at optical frequency,” Opt. Express20(14), 14871–14878 (2012). [CrossRef] [PubMed]
  22. C. J. Chen, J. S. Chen, and Y. B. Chen, “Optical responses from lossy metallic slit arrays under the excitation of a magnetic polariton,” J. Opt. Soc. Am. B28(8), 1798–1806 (2011). [CrossRef]
  23. C. Cheng, J. Chen, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, and H. T. Wang, “Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits,” Appl. Phys. Lett.91(11), 111111 (2007). [CrossRef]
  24. S. M. Xiao, V. P. Drachev, A. V. Kildishev, X. J. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature466(7307), 735–738 (2010). [CrossRef] [PubMed]
  25. S. Vassant, J. P. Hugonin, F. Marquier, and J. J. Greffet, “Berreman mode and epsilon near zero mode,” Opt. Express20(21), 23971–23977 (2012). [CrossRef] [PubMed]
  26. D. K. Jacob, S. C. Dunn, and M. G. Moharam, “Normally incident resonant grating reflection filters for efficient narrow-band spectral filtering of finite beams,” J. Opt. Soc. Am. A18(9), 2109–2120 (2001). [CrossRef] [PubMed]
  27. B. J. Lee, L. P. Wang, and Z. M. Zhang, “Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film,” Opt. Express16(15), 11328–11336 (2008). [CrossRef] [PubMed]
  28. Y. C. Chang, C. M. Wang, M. N. Abbas, M. H. Shih, and D. P. Tsai, “T-shaped plasmonic array as a narrow-band thermal emitter or biosensor,” Opt. Express17(16), 13526–13531 (2009). [CrossRef] [PubMed]
  29. M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B79(3), 033101 (2009). [CrossRef]
  30. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).
  31. Z. M. Zhang, Nano/Microscale Heat Transfer (McGraw-Hill, 2007).
  32. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt.22(7), 1099–20 (1983). [CrossRef] [PubMed]
  33. B. J. Lee, Z. M. Zhang, E. A. Early, D. P. DeWitt, and B. K. Tsai, “Modeling radiative properties of silicon with coatings and comparison with reflectance measurements,” J. Thermophys. Heat Transfer19, 558–565 (2005).
  34. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1999).
  35. L. P. Wang and Z. M. Zhang, “Effect of magnetic polaritons on the radiative properties of double-layer nanoslit arrays,” J. Opt. Soc. Am. B27(12), 2595–2604 (2010). [CrossRef]
  36. N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science317(5845), 1698–1702 (2007). [CrossRef] [PubMed]
  37. S. A. Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys.68(2), 449–521 (2005). [CrossRef]
  38. J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett.95(22), 223902 (2005). [CrossRef] [PubMed]
  39. Y. B. Chen, Z. M. Zhang, and P. J. Timans, “Radiative properties of patterned wafers with nanoscale linewidth,” J. Heat Transfer129(1), 79–90 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited