## Polarization-dependent photon switch in a one-dimensional coupled-resonator waveguide |

Optics Express, Vol. 21, Issue 18, pp. 20786-20799 (2013)

http://dx.doi.org/10.1364/OE.21.020786

Enhanced HTML Acrobat PDF (3094 KB)

### Abstract

Polarization-dependent photon switch is one of the most important ingredients in building future large-scale all-optical quantum network. We present a scheme for a single-photon switch in a one-dimensional coupled-resonator waveguide, where *N _{a}* Λ-type three-level atoms are individually embedded in each of the resonator. By tuning the interaction between atom and field, we show that an initial incident photon with a certain polarization can be transformed into its orthogonal polarization state. Finally, we use the fidelity as a figure of merit and numerically evaluate the performance of our photon switch scheme in varieties of system parameters, such as number of atoms, energy detuning and dipole couplings.

© 2013 OSA

**OCIS Codes**

(270.0270) Quantum optics : Quantum optics

(230.4555) Optical devices : Coupled resonators

(270.5585) Quantum optics : Quantum information and processing

**ToC Category:**

Quantum Optics

**History**

Original Manuscript: July 16, 2013

Revised Manuscript: August 12, 2013

Manuscript Accepted: August 13, 2013

Published: August 28, 2013

**Citation**

Zhe-Yong Zhang, Yu-Li Dong, Sheng-Li Zhang, and Shi-Qun Zhu, "Polarization-dependent photon switch in a one-dimensional coupled-resonator waveguide," Opt. Express **21**, 20786-20799 (2013)

http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-18-20786

Sort: Year | Journal | Reset

### References

- H. J. Kimble, “The quantum internet,” Nature453, 1023–1030 (2008). [CrossRef] [PubMed]
- X. Zhou, I. Dotsenko, B. Peaudecerf, T. Rybarczyk, C. Sayrin, S. Gleyzes, J. M. Raimond, M. Brune, and S. Haroche, “Field Locked to a Fock State by Quantum Feedback with Single Photon Corrections,” Phys. Rev. Lett.108, 243602 (2012). [CrossRef] [PubMed]
- M. Hofheinz, E. M. Weig, M. Ansmann, R. C. Bialczak, E. Lucero, M. Neeley, A. D. O’Connell, H. Wang, J. M. Martinis, and A. N. Cleland, “Generation of Fock states in a superconducting quantum circuit,” Nature (London)454, 310–314 (2008). [CrossRef]
- B. Lounis and M. Orrit, “Single-photon sources,” Rep. Prog. Phys.68, 1129–1179 (2005). [CrossRef]
- M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and G. Rempe, “A single-photon server with just one atom,” Nature Physics3, 253–255 (2007). [CrossRef]
- S. Buckley, K. Rivoire, and J. Vučković, “Engineered quantum dot single-photon sources,” Rep. Prog. Phys.75, 126503 (2012). [CrossRef] [PubMed]
- M. D. Lukin, “Trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys.75, 457–472 (2003). [CrossRef]
- L. Chirolli, G. Burkard, S. Kumar, and D. P. DiVincenzo, “Superconducting resonators as beam splitters for linear-optics quantum computation,” Phys. Rev. Lett.104, 230502 (2010). [CrossRef] [PubMed]
- J. T. Shen and S. Fan, “Coherent photon transport from spontaneous emission in one-dimensional waveguides,” Opt. Lett.30, 2001–2003 (2005). [CrossRef] [PubMed]
- D. Roy, “Few-photon optical diode,” Phys. Rev. B81, 155117 (2010). [CrossRef]
- Y. Shen, M. Bradford, and J. T. Shen, “Single-Photon Diode by Exploiting the Photon Polarization in a Waveguide,” Phys. Rev. Lett.107, 173902 (2011). [CrossRef] [PubMed]
- M. Orrit, “Quantum light switch,” Nat. Phys.3, 755–756 (2007). [CrossRef]
- D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys.3, 807–812 (2007). [CrossRef]
- J. T. Shen and S. Fan, “Coherent single photon Transport in a one-dimensional waveguide coupled with superconducting quantum bits,” Phys. Rev. Lett.95, 213001 (2005). [CrossRef] [PubMed]
- T. S. Tsoi and C. K. Law, “Quantum interference effects of a single photon interacting with an atomic chain inside a one-dimensional waveguide,” Phys. Rev. A78, 063832 (2008). [CrossRef]
- D. Witthaut and A. S. Sørensen, “Photon scattering by a three-level emitter in a one-dimensional waveguide,” New J. Phys.12, 043052 (2010). [CrossRef]
- T. S. Tsoi and C. K. Law, “Single-photon scattering on Λ-type three-level atoms in a one-dimensional waveguide,” Phys. Rev. A80, 033823 (2009). [CrossRef]
- J.-T. Shen and S. Fan, “Strongly correlated two-photon transport in a one-dimensional waveguide coupled to a two-level system,” Phys. Rev. Lett.98, 153003 (2007). [CrossRef] [PubMed]
- J.-T. Shen and S. Fan, “Strongly correlated multiparticle transport in one dimension through a quantum impurity,” Phys. Rev. A76, 062709 (2007). [CrossRef]
- D. Roy, “Two-photon scattering by a driven three-level emitter in a one-dimensional waveguide and electromagnetically induced transparency,” Phys. Rev. Lett.106, 053601 (2011). [CrossRef] [PubMed]
- E. Rephaeli, Ş. E. Kocabaş, and S. Fan, “Quantum interference effects of a single photon interacting with an atomic chain inside a one-dimensional waveguide,” Phys. Rev. A84, 063832 (2011). [CrossRef]
- K. Y. Bliokh, Y. P. Bliokh, V. Freilikher, S. Savel’ev, and F. Nori, “Unusual resonators: Plasmonics, metamaterials, and random media,” Rev. Mod. Phys.80, 1201–1213 (2008). [CrossRef]
- D. E. Chang, A. S. Sorensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett.97, 053002 (2006). [CrossRef] [PubMed]
- M. J. Hartmann, F. G. S. L. Brandão, and M. B. Plenio, “Strongly interacting polaritons in coupled arrays of cavities,” Nat. Phys.2, 849–855 (2006). [CrossRef]
- L. Zhou, Y. B. Gao, Z. Song, and C. P. Sun, “Coherent output of photons from coupled superconducting transmission line resonators controlled by charge qubits,” Phys. Rev. A77, 013831 (2008). [CrossRef]
- A. D. Greentree, C. Tahan, J. H. Cole, and L. C. L. Hollenberg, “Quantum phase transitions of light,” Nat. Phys.2, 856–861 (2006). [CrossRef]
- L. Zhou, H. Dong, Y. X. Liu, C. P. Sun, and F. Nori, “Quantum supercavity with atomic mirrors,” Phys. Rev. A78, 063827 (2008). [CrossRef]
- Z. R. Gong, H. Ian, L. Zhou, and C. P. Sun, “Controlling quasibound states in a one-dimensional continuum through an electromagnetically-induced-transparency mechanism,” Phys. Rev. A78, 053806 (2008). [CrossRef]
- J. Q. Liao, Z. R. Gong, L. Zhou, Y. X. Liu, C. P. Sun, and F. Nori, “Controlling the transport of single photons by tuning the frequency of either one or two cavities in an array of coupled cavities,” Phys. Rev. A81, 042304 (2010). [CrossRef]
- P. Longo, P. Schmitteckert, and K. Busch, “Few-photon transport in low-dimensional systems interaction-induced radiation trapping,” Phys. Rev. Lett.104, 023602 (2010). [CrossRef]
- P. Longo, P. Schmitteckert, and K. Busch, “Few-photon transport in low-dimensional systems,” Phys. Rev. A83, 063828 (2011). [CrossRef]
- L. Zhou, Z. R. Gong, Y. X. Liu, C. P. Sun, and F. Nori, “Controllable scattering of a single photon inside a one-dimensional resonator waveguide,” Phys. Rev. Lett.101, 100501 (2008). [CrossRef] [PubMed]
- Y. Chang, Z. R. Gong, and C. P. Sun, “Multiatomic mirror for perfect reflection of single photons in a wide band of frequency,” Phys. Rev. A83, 013825 (2011). [CrossRef]
- Z. H. Wang, Y. Li, D. L. Zhou, C. P. Sun, and P. Zhang, “Single-photon scattering on a strongly dressed atom,” Phys. Rev. A86, 023824 (2012). [CrossRef]
- M. T. Cheng, X. S. Ma, M. T. Ding, Y. Q. Luo, and G. X. Zhao, “Single-photon transport in one-dimensional coupled-resonator waveguide with local and nonlocal,” Phys. Rev. A85, 053840 (2012). [CrossRef]
- A. Rauschenbeutel, P. Bertet, S. Osnaghi, G. Nogues, M. Brune, J. M. Raimond, and S. Haroche, “Controlled entanglement of two field modes in a cavity quantum electrodynamics experiment,” Phys. Rev. A64, 050301(R)(2001). [CrossRef]
- Y. Eto, A. Noguchi, P. Zhang, M. Ueda, and M. Kozuma, “Projective measurement of a single nuclear spin qubit by using two-mode cavity QED,” Phys. Rev. Lett.106, 160501 (2011). [CrossRef] [PubMed]
- T. W. Chen, C. K. Law, and P. T. Leung, “Single-photon scattering and quantum-state transformations in cavity QED,” Phys. Rev. A69, 063810 (2004). [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.