OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 18 — Sep. 9, 2013
  • pp: 20800–20805

1.95 μm kHz-linewidth single-frequency fiber laser using self-developed heavily Tm3+-doped germanate glass fiber

Xin He, Shanhui Xu, Can Li, Changsheng Yang, Qi Yang, Shupei Mo, Dongdan Chen, and Zhongmin Yang  »View Author Affiliations

Optics Express, Vol. 21, Issue 18, pp. 20800-20805 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1165 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrated a kHz-linewidth single-frequency laser at 1.95 μm using the self-developed heavily Tm3+-doped single-mode germanate glass fiber with the net gain coefficient of 2.3 dB per centimeter. The maximum output power of the stable single longitudinal mode continuous wave laser is over 200 mW. The slope efficiency measured versus the absorbed pump power is 34.8%, the signal-to-noise ratio is higher than 68 dB and laser linewidth is less than 7 kHz. A wavelength-tuning from 1949.55 to 1951.23 nm was also demonstrated based on changing the tension on the fiber Bragg grating outside the cavity.

© 2013 OSA

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(140.3510) Lasers and laser optics : Lasers, fiber
(140.3570) Lasers and laser optics : Lasers, single-mode

ToC Category:
Lasers and Laser Optics

Original Manuscript: July 24, 2013
Revised Manuscript: August 18, 2013
Manuscript Accepted: August 20, 2013
Published: August 28, 2013

Xin He, Shanhui Xu, Can Li, Changsheng Yang, Qi Yang, Shupei Mo, Dongdan Chen, and Zhongmin Yang, "1.95 μm kHz-linewidth single-frequency fiber laser using self-developed heavily Tm3+-doped germanate glass fiber," Opt. Express 21, 20800-20805 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Agger, J. H. Povlsen, and P. Varming, “Single-frequency thulium-doped distributed-feedback fiber laser,” Opt. Lett.29(13), 1503–1505 (2004). [CrossRef] [PubMed]
  2. N. Y. Voo, J. K. Sahu, and M. Ibsen, “345 mW 1836 nm single-frequency DFB fiber laser MOPA,” IEEE Photon. Technol. Lett.17(12), 2550–2552 (2005). [CrossRef]
  3. C. Wu, Y. Ju, Z. Wang, Q. Wang, C. Song, and Y. Wang, “Diode-pumped single frequency Tm:YAG laser at room temperature,” Laser Phys. Lett.5(11), 793–796 (2008). [CrossRef]
  4. X. Zhang, L. Li, J. Cui, Y. Ju, and Y. Wang, “Single longitudinal mode and contiuously tunable frequency Tm, Ho:YLF laser with two solid etalons,” Laser Phys. Lett.7(3), 194–197 (2010). [CrossRef]
  5. N. Coluccelli, G. Galzerano, D. Parisi, M. Tonelli, and P. Laporta, “Diode-pumped single-frequency Tm:LiLuF4 ring laser,” Opt. Lett.33(17), 1951–1953 (2008). [CrossRef] [PubMed]
  6. G. D. Goodno, L. D. Book, and J. E. Rothenberg, “Low-phase-noise, single-frequency, single-mode 608 W thulium fiber amplifier,” Opt. Lett.34(8), 1204–1206 (2009). [CrossRef] [PubMed]
  7. J. Geng, J. Wu, S. Jiang, and J. Yu, “Efficient operation of diode-pumped single-frequency thulium-doped fiber lasers near 2 micro m,” Opt. Lett.32(4), 355–357 (2007). [CrossRef] [PubMed]
  8. J. Geng, Q. Wang, T. Luo, S. Jiang, and F. Amzajerdian, “Single-frequency narrow-linewidth Tm-doped fiber laser using silicate glass fiber,” Opt. Lett.34(22), 3493–3495 (2009). [CrossRef] [PubMed]
  9. S. D. Jackson, “Towards high-power mid-infrared emission from a fiber laser,” Nat. Photonics6(7), 423–431 (2012). [CrossRef]
  10. W. J. Peng, F. P. Yan, Q. Li, S. Liu, T. Feng, S. Y. Tan, and S. C. Feng, “1.94 μm switchable dual-wavelength Tm3+ fiber laser employing high-birefringence fiber Bragg grating,” Appl. Opt.52(19), 4601–4607 (2013). [CrossRef] [PubMed]
  11. C. V. Poulsen, P. Varming, J. E. Pedersen, M. Beukema, and S. L. Lauridsen, “Applications of single frequency fiber lasers,” in Proceedings of the Conference on Lasers and Electro-Optics Europe, 2003 CLEO/Europe, 617 (2003).
  12. S. H. Xu, Z. M. Yang, T. Liu, W. N. Zhang, Z. M. Feng, Q. Y. Zhang, and Z. H. Jiang, “An efficient compact 300 mW narrow-linewidth single frequency fiber laser at 1.5 microm,” Opt. Express18(2), 1249–1254 (2010). [CrossRef] [PubMed]
  13. S. Xu, Z. Yang, W. Zhang, X. Wei, Q. Qian, D. Chen, Q. Zhang, S. Shen, M. Peng, and J. Qiu, “400 mW ultrashort cavity low-noise single-frequency Yb3+-doped phosphate fiber laser,” Opt. Lett.36(18), 3708–3710 (2011). [CrossRef] [PubMed]
  14. Y. Cheng, J. T. Kringlebotn, W. H. Loh, R. I. Laming, and D. N. Payne, “Stable single-frequency traveling-wave fiber loop laser with integral saturable-absorber-based tracking narrow-band filter,” Opt. Lett.20(8), 875–877 (1995). [CrossRef] [PubMed]
  15. Z. Meng, G. Stewart, and G. Whitenett, “Stable single-mode operation of a narrow-linewidth, linearly polarized, Erbium-fiber ring laser using a saturable absorber,” J. Lightwave Technol.24(5), 2179–2183 (2006). [CrossRef]
  16. M. Horowitz, R. Daisy, B. Fischer, and J. L. Zyskind, “Linewidth-narrowing mechanism in lasers by nonlinear wave mixing,” Opt. Lett.19(18), 1406–1408 (1994). [CrossRef] [PubMed]
  17. H. Chen, F. Babin, M. Leblanc, and G. W. Schinn, “Widely tunable single-frequency Erbium-doped fiber laser,” IEEE Photon. Technol. Lett.15(2), 185–187 (2003). [CrossRef]
  18. S. Yu, Z. Yang, and S. Xu, “Judd-Ofelt and laser parameterization of Tm3+-doped barium gallo-germanate glass fabricated with efficient dehydration methods,” Opt. Mater.31(11), 1723–1728 (2009). [CrossRef]
  19. S. Yu, Z. Yang, and S. Xu, “Spectroscopic properties and energy transfer analysis of Tm3+-doped BaF2-Ga2O3-GeO2-La2O3 glass,” J. Fluoresc.20(3), 745–751 (2010). [CrossRef] [PubMed]
  20. M. Hercher, “An analysis of saturable absorbers,” Appl. Opt.6(5), 947–954 (1967). [CrossRef] [PubMed]
  21. P. Horak and W. H. Loh, “On the delayed self-heterodyne interferometric technique for determining the linewidth of fiber lasers,” Opt. Express14(9), 3923–3928 (2006). [CrossRef] [PubMed]
  22. G. Di Domenico, S. Schilt, and P. Thomann, “Simple approach to the relation between laser frequency noise and laser line shape,” Appl. Opt.49(25), 4801–4807 (2010). [CrossRef] [PubMed]
  23. P. Horak, N. Y. Voo, M. Ibsen, and W. H. Loh, “Pump-noise-induced linewidth contributions in distributed feedback fiber lasers,” IEEE Photon. Technol. Lett.18(9), 998–1000 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited