OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 18 — Sep. 9, 2013
  • pp: 20831–20836

Optimizing nanophotonic cavity designs with the gravitational search algorithm

Timothy W. Saucer and Vanessa Sih  »View Author Affiliations


Optics Express, Vol. 21, Issue 18, pp. 20831-20836 (2013)
http://dx.doi.org/10.1364/OE.21.020831


View Full Text Article

Enhanced HTML    Acrobat PDF (1580 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Designing photonic crystal cavities with high quality factors and low mode volumes is of great importance for maximizing interactions of light and matter in metamaterials. Previous work on photonic crystal cavities has revealed dramatic improvements in performance by fine-tuning the device design. In L3 cavities, slight shifts of the holes on the edge of the cavity have been found to greatly increase quality factors without significantly altering the mode volume. Here we demonstrate utilizing a nature inspired search algorithm to efficiently explore a large parameter space. The results converge upon a new cavity model with a high quality factor to mode volume ratio (Q/V = 798,000 (λ/n)−3).

© 2013 OSA

OCIS Codes
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: May 14, 2013
Revised Manuscript: August 17, 2013
Manuscript Accepted: August 17, 2013
Published: August 29, 2013

Citation
Timothy W. Saucer and Vanessa Sih, "Optimizing nanophotonic cavity designs with the gravitational search algorithm," Opt. Express 21, 20831-20836 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-18-20831


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. D. Joannopoulos, R. D. Maede, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, Princeton, 1995).
  2. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432(7014), 200–203 (2004). [CrossRef] [PubMed]
  3. J. Lee, T. W. Saucer, A. J. Martin, J. M. Millunchick, and V. Sih, “Time-Resolved Two-Pulse Excitation of Quantum Dots Coupled to a Photonic Crystal Cavity in the Purcell Regime,” Phys. Rev. Lett.110(1), 013602 (2013). [CrossRef] [PubMed]
  4. K. J. Vahala, “Optical microcavities,” Nature424(6950), 839–846 (2003). [CrossRef] [PubMed]
  5. B. Jiang, Y. J. Zhang, W. J. Zhou, W. Chen, A. J. Liu, and W. H. Zheng, “Spontaneous-emission control by local density of states of photonic crystal cavity,” Chin. Phys. B20(2), 024208 (2011). [CrossRef]
  6. Z. Lin and J. Vučković, “Enhanced two-photon processes in single quantum dots inside photonic crystal nanocavities,” Phys. Rev. B81(3), 035301 (2010). [CrossRef]
  7. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science284(5421), 1819–1821 (1999). [CrossRef] [PubMed]
  8. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003). [CrossRef] [PubMed]
  9. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Investigation of high-Q channel drop filters using donor-type defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett.83(8), 1512 (2003). [CrossRef]
  10. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express13(4), 1202–1214 (2005). [CrossRef] [PubMed]
  11. S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 3rd ed. (Prentice Hall, 2009).
  12. G. S. Hornby, J. D. Lohn, and D. S. Linden, “Computer-Automated Evolution of an X-Band Antenna for NASA’s Space Technology 5 Mission,” Evol. Comput.19(1), 1–23 (2011). [CrossRef] [PubMed]
  13. E. Bonabeau, G. Theraulaz, and M. Dorigo, Swarm Intelligence: From Natural to Artificial Systems (Oxford University Press, Oxford, 1999).
  14. A. Gondarenko and M. Lipson, “Low modal volume dipole-like dielectric slab resonator,” Opt. Express16(22), 17689–17694 (2008). [CrossRef] [PubMed]
  15. S. Preble, M. Lipson, and H. Lipson, “Two-dimensional photonic crystals designed by evolutionary algorithms,” Appl. Phys. Lett.86(6), 061111 (2005). [CrossRef]
  16. C. Lin and M. L. Povinelli, “Optimal design of aperiodic, vertical silicon nanowire structures for photovoltaics,” Opt. Express19(S5Suppl 5), A1148–A1154 (2011). [CrossRef] [PubMed]
  17. A. Mutapcic, S. Boyd, A. Farjadpour, S. G. Johnson, and Y. Avniel, “Robust design of slow-light tapers in periodic waveguides,” Eng. Optim.41(4), 365–384 (2009). [CrossRef]
  18. E. Rashedi, H. Nezamabadi-pour, and S. Saryazdi, “GSA: A Gravitational Search Algorithm,” Inf. Sci.179(13), 2232–2248 (2009). [CrossRef]
  19. S. T. Thornton and J. B. Marion, Classical Dynamics of Particles and Systems, 5th ed. (Brooks Cole, 2003).
  20. R. Coccioli, M. Boroditsky, K. W. Kim, Y. Rahmat-Samii, and E. Yablonovitch, “Smallest possible electromagnetic mode volume in a diectric cavity,” IEEE Proc. Optoelectron. 145, 391 (1998).
  21. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010). [CrossRef]
  22. F. Römer, B. Witzigmann, O. Chinellato, and P. Arbenz, “Investigation of the Purcell effect in photonic crystal cavities with a 3D Finite Element Maxwell Solver,” Opt. Quantum Electron.39(4-6), 341–352 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited