OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 18 — Sep. 9, 2013
  • pp: 20837–20850

Hitless wavelength-selective switch with quadruple series-coupled microring resonators using multiple-quantum-well waveguides

Hiroshi Kamiya, Tsuyoshi Goto, Hiroki Ikehara, Redouane Katouf, Taro Arakawa, and Yasuo Kokubun  »View Author Affiliations

Optics Express, Vol. 21, Issue 18, pp. 20837-20850 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (4462 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a hitless wavelength-selective switch (WSS) based on InGaAs/InAlAs five-layer asymmetric coupled quantum well (FACQW) quadruple series-coupled microring resonators. The WSS is driven by the electric-field-induced change in refractive index in the FACQW core layer caused by the quantum-confined Stark effect (QCSE) for high-speed operation. The WSS with high-mesa waveguides is fabricated on a molecular beam epitaxy-grown wafer by dry etching. The fabricated WSS consists of four microrings, each with a round-trip length of 350 μm and five directional couplers with shallow grooves. A boxlike spectral response and hitless switching with higher extinction ratios than a double series-coupled microring resonator are successfully demonstrated. In addition, we propose the improvement of switching characteristics by controlling the coupling efficiencies at the directional couplers.

© 2013 OSA

OCIS Codes
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(230.4555) Optical devices : Coupled resonators
(230.7408) Optical devices : Wavelength filtering devices

ToC Category:
Optical Devices

Original Manuscript: May 13, 2013
Revised Manuscript: August 5, 2013
Manuscript Accepted: August 9, 2013
Published: August 29, 2013

Hiroshi Kamiya, Tsuyoshi Goto, Hiroki Ikehara, Redouane Katouf, Taro Arakawa, and Yasuo Kokubun, "Hitless wavelength-selective switch with quadruple series-coupled microring resonators using multiple-quantum-well waveguides," Opt. Express 21, 20837-20850 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Suzuki, T. Mizuno, M. Oguma, T. Shibata, H. Takahashi, Y. Hibino, and A. Himeno, “Low loss fully reconfigurable wavelength-selective optical 1× N switch based on transversal filter configuration using silica-based planar lightwave circuit,” IEEE Photon. Technol. Lett.16(6), 1480–1482 (2004). [CrossRef]
  2. S. J. Emelett and R. Soref, “Design and simulation of silicon microring optical routing switches,” J. Lightwave Technol.23(4), 1800–1807 (2005). [CrossRef]
  3. Y. Goebuchi, T. Kato, and Y. Kokubun, “Fast and stable wavelength-selective switch using double-series coupled dielectric microring resonator,” IEEE Photon. Technol. Lett.18(3), 538–540 (2006). [CrossRef]
  4. T. Kato and Y. Kokubun, “Optimum coupling coefficients in second-order series-coupled ring resonator for nonblocking wavelength channel switch,” J. Lightwave Technol.24(2), 991–999 (2006). [CrossRef]
  5. Y. Yanagase, S. Suzuki, Y. Kokubun, and S. T. Chu, “Box-like filter response and expansion of FSR by a vertically triple coupled microring resonator filter,” J. Lightwave Technol.20(8), 1525–1529 (2002). [CrossRef]
  6. S. Xiao, M. H. Khan, H. Shen, and M. Qi, “A highly compact third-order silicon microring add-drop filter with a very large free spectral range, a flat passband and a low delay dispersion,” Opt. Express15(22), 14765–14771 (2007). [CrossRef] [PubMed]
  7. Y. Yanagase, S. Yamagata, and Y. Kokubun, “Wavelength tunable polymer microring resonator filter with 9.4 nm tuning range,” Electron. Lett.39(12), 922–924 (2003). [CrossRef]
  8. B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett.16(10), 2263–2265 (2004). [CrossRef]
  9. T. Kato, Y. Goebuchi, and Y. Kokubun, “Improvement of switching characteristics of hitless wavelength-selective switch with double-series-coupled microring resonators,” Jpn. J. Appl. Phys.46(6A), 3428–3432 (2007). [CrossRef]
  10. O. Tsilipakos, T. V. Yioultsis, and E. E. Kriezisa, “Theoretical analysis of thermally tunable microring resonator filters made of dielectric-loaded plasmonic waveguides,” J. Appl. Phys.106(9), 093109 (2009). [CrossRef]
  11. S.-J. Chang, C.-Y. Ni, Z. Wang, and Y.-J. Chen, “A Compact and low power consumption optical switch based on microrings,” IEEE Photon. Technol. Lett.20(12), 1021–1023 (2008). [CrossRef]
  12. T.-J. Wang and C.-H. Chu, “Wavelength-tunable microring resonator on lithium niobate,” IEEE Photon. Technol. Lett.19(23), 1904–1906 (2007). [CrossRef]
  13. J.-H. Song, D.-H. Kim, and S.-S. Lee, “Polymeric microring resonator enabling variable extinction ratio,” Jpn. J. Appl. Phys.46(7), L145–L147 (2007). [CrossRef]
  14. D. Geuzebroek, E. Klein, H. Kelderman, N. Baker, and A. Driessen, “Compact wavelength-selective switch for gigabit filtering in access networks,” IEEE Photon. Technol. Lett.17(2), 336–338 (2005). [CrossRef]
  15. M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett.89(7), 071110 (2006). [CrossRef]
  16. C. Li, L. Zhou, and A. W. Poon, “Silicon microring carrier-injection-based modulators/switches with tunable extinction ratios and OR-logic switching by using waveguide cross-coupling,” Opt. Express15(8), 5069–5076 (2007). [CrossRef] [PubMed]
  17. R. Amatya, C. W. Holzwarth, H. I. Smith, and R. J. Ram, “Precision tunable silicon compatible microring filters,” IEEE Photon. Technol. Lett.20(20), 1739–1741 (2008). [CrossRef]
  18. H. L. R. Lira, S. Manipatruni, and M. Lipson, “Broadband hitless silicon electro-optic switch for on-chip optical networks,” Opt. Express17(25), 22271–22280 (2009). [CrossRef] [PubMed]
  19. T. Hu, W. Wang, C. Qiu, P. Yu, H. Qiu, Y. Zhao, X. Jiang, and J. Yang, “Thermally tunable filters based on third-order microring resonators for WDM applications,” IEEE Photon. Technol. Lett.24(6), 524–526 (2012). [CrossRef]
  20. X. Luo, J. Song, S. Feng, A. W. Poon, T.-Y. Liow, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon high-order coupled-microring-based electro-optical switches for on-chip optical interconnects,” IEEE Photon. Technol. Lett.24(10), 821–823 (2012). [CrossRef]
  21. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge absorption in quantum well structures: The quantum-confined Stark effect,” Phys. Rev. Lett.53(22), 2173–2176 (1984). [CrossRef]
  22. T. H. Wood, “Multiple quantum well (MQW) waveguide modulators,” J. Lightwave Technol.6(6), 743–757 (1988). [CrossRef]
  23. J. V. Hryniewicz, P. P. Absil, B. E. Little, R. A. Wilson, and P.-T. Ho, “Higher order filter response in coupled microring resonators,” IEEE Photon. Technol. Lett.12(3), 320–322 (2000). [CrossRef]
  24. V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett.14(1), 74–76 (2002). [CrossRef]
  25. R. Grover, T. A. Ibrahim, S. Kanakaraju, L. Lucas, L. C. Calhoun, and P.-T. Ho, “A tunable GaInAsP–InP optical microring notch filter,” IEEE Photon. Technol. Lett.16(2), 467–469 (2004). [CrossRef]
  26. H. Simos, A. Bogris, N. Raptis, and D. Syvridis, “Dynamic properties of a WDM switching module based on active microring resonators,” IEEE Photon. Technol. Lett.22(4), 206–208 (2010). [CrossRef]
  27. S. Ravindran, A. Datta, K. Alameh, and Y. T. Lee, “GaAs based long-wavelength microring resonator optical switches utilising bias assisted carrier-injection induced refractive index change,” Opt. Express20(14), 15610–15627 (2012). [CrossRef] [PubMed]
  28. H. Ikehara, T. Goto, H. Kamiya, T. Arakawa, and Y. Kokubun, “Hitless wavelength-selective switch using multiple quantum well second-order series coupled microring resonators,” Photonics in Switching (PS), Th-S24–O07 (2012).
  29. H. Ikehara, T. Goto, H. Kamiya, T. Arakawa, and Y. Kokubun, “Hitless wavelength-selective switch based on quantum well second-order series-coupled microring resonators,” Opt. Express21(5), 6377–6390 (2013). [CrossRef] [PubMed]
  30. H. Kamiya, T. Goto, K. Redouane, T. Arakawa, and Y. Kokubun, “First Demonstration of Hitless Wavelength Selective Switch Based on Quadruple Series Coupled Multiple Quantum Well Microring Resonator,” Optical Fiber Communication Conference and Exposition/The National Fiber Optic Engineers Conference (OFC/NOOEC 2013), OW1C.5 (2013). [CrossRef]
  31. H. Feng, J. P. Pang, M. Sugiyama, K. Tada, and Y. Nakano, “Field-induced optical effect in a five-step asymmetric coupled quantum well with modified potential,” IEEE J. Quantum Electron.34(7), 1197–1208 (1998). [CrossRef]
  32. T. Arakawa, T. Toya, M. Ushigome, K. Yamaguchi, T. Ide, and K. Tada, “InGaAs/InAlAs five-layer asymmetric coupled quantum well exhibiting giant electrorefractive index change,” Jpn. J. Appl. Phys.50, 032204 (2011). [CrossRef]
  33. G. Barbarossa, A. M. Matteo, and M. N. Armenise, “Theoretical analysis of triple-coupler ring-based optitacl guided-wave resonator,” J. Lightwave Technol.13(2), 148–157 (1995). [CrossRef]
  34. R. Orta, P. Savi, R. Rascone, and D. Trinchero, “Synthesis of multiple-ring-resonator filters for optical systems,” IEEE Photon. Technol. Lett.7(12), 1447–1449 (1995). [CrossRef]
  35. C. K. Madsen and J. H. Zhao, “A general planar waveguide autoregressive optical filter,” J. Lightwave Technol.14(3), 437–447 (1996). [CrossRef]
  36. M. Born and E. Wolf, Principles of Optics, 7th Edition (Cambridge University Press, 1999), p.838.
  37. T. Arakawa, T. Hariki, Y. Amma, M. Fukuoka, M. Ushigome, and K. Tada, “Low-voltage Mach-Zehnder modulator with InGaAs/InAlAs five-layer asymmetric coupled quantum well,” Jpn. J. Appl. Phys.51, 042203 (2012). [CrossRef]
  38. T. Kato, Y. Goebuchi, and Y. Kokubun, “Experimental study of optimum coupling efficiency of double series coupled microring resonator,” Jpn. J. Appl. Phys.45(10A), 7741–7745 (2006). [CrossRef]
  39. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol.15(6), 998–1005 (1997). [CrossRef]
  40. T. Makino, T. Gotoh, R. Hasegawa, T. Arakawa, and Y. Kokubun, “Microring resonator wavelength tunable filter using five-layer asymmetric coupled quantum well,” J. Lightwave Technol.29(16), 2387–2393 (2011). [CrossRef]
  41. T. Tatewaki and Y. Kokubun, “Origin of UV sensitivity of SiON film and bidirectional UV trimming of SiON microring resonator,” Jpn. J. Appl. Phys.49(7), 072201 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited