OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 18 — Sep. 9, 2013
  • pp: 20863–20872

An improved refractive index sensor based on genetic optimization of plasmon waveguide resonance

Farshid Bahrami, Mathieu Maisonneuve, Michel Meunier, J. Stewart Aitchison, and Mo Mojahedi  »View Author Affiliations


Optics Express, Vol. 21, Issue 18, pp. 20863-20872 (2013)
http://dx.doi.org/10.1364/OE.21.020863


View Full Text Article

Enhanced HTML    Acrobat PDF (1016 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Plasmon waveguide resonance (PWR) sensors are particularly useful for biosensing due to their unique ability to perform sensing with two different polarizations. In this paper we report a comprehensive performance comparison between the surface plasmon resonance (SPR) sensor and the PWR sensor in terms of the sensitivity and the refractive index resolution. Both sensors were optimized using a genetic algorithm to acquire their best performance for bulk sensing applications. The experimental results show that the PWR sensor has a refractive index resolution of 5 × 10−7 RIU which is 6 times smaller than that of the optimized SPR sensor. The TE polarization in the PWR sensor has a resolution of 1.4 × 10−6 RIU which is smaller than the SPR sensor. The polarization diversity in the PWR sensor is another advantage which can be used to improve the measurement reliability.

© 2013 OSA

OCIS Codes
(230.7400) Optical devices : Waveguides, slab
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Sensors

History
Original Manuscript: June 19, 2013
Revised Manuscript: August 14, 2013
Manuscript Accepted: August 15, 2013
Published: August 29, 2013

Citation
Farshid Bahrami, Mathieu Maisonneuve, Michel Meunier, J. Stewart Aitchison, and Mo Mojahedi, "An improved refractive index sensor based on genetic optimization of plasmon waveguide resonance," Opt. Express 21, 20863-20872 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-18-20863


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620(1-2), 8–26 (2008). [CrossRef] [PubMed]
  2. S. Janz, A. Densmore, D. X. Xu, P. Waldron, J. Lapointe, J. H. Schmid, T. Mischki, G. Lopinski, A. Delâge, R. McKinnon, P. Cheben, and B. Lamontagne, “Silicon photonic wire waveguide sensors,” in Advanced Photonic Structures for Biological and Chemical Detection, X. Fan, ed. (Springer, 2009), pp. 229–264.
  3. A. Shalabney and I. Abdulhalim, “Sensitivity-enhancement methods for surface plasmon sensors,” Laser and Photonics Reviews5(4), 571–606 (2011). [CrossRef]
  4. A. Otto and W. Sohler, “Modification of the total reflection modes in a dielectric film by one metal boundary,” Opt. Commun.3(4), 254–258 (1971). [CrossRef]
  5. Z. Salamon, M. F. Brown, and G. Tollin, “Plasmon resonance spectroscopy: Probing molecular interactions within membranes,” Trends Biochem. Sci.24(6), 213–219 (1999). [CrossRef] [PubMed]
  6. Z. Salamon, H. A. Macleod, and G. Tollin, “Coupled plasmon-waveguide resonators: A new spectroscopic tool for probing proteolipid film structure and properties,” Biophys. J.73(5), 2791–2797 (1997). [CrossRef] [PubMed]
  7. M. Zourob, S. Mohr, B. J. T. Brown, P. R. Fielden, M. McDonnell, and N. J. Goddard, “The development of a metal clad leaky waveguide sensor for the detection of particles,” Sens. Actuators B Chem.90(1-3), 296–307 (2003). [CrossRef]
  8. N. Skivesen, R. Horvath, S. Thinggaard, N. B. Larsen, and H. C. Pedersen, “Deep-probe metal-clad waveguide biosensors,” Biosens. Bioelectron.22(7), 1282–1288 (2007). [CrossRef] [PubMed]
  9. M. Zourob, S. Mohr, B. J. Brown, P. R. Fielden, M. B. McDonnell, and N. J. Goddard, “An integrated optical leaky waveguide sensor with electrically induced concentration system for the detection of bacteria,” Lab Chip5(12), 1360–1365 (2005). [CrossRef] [PubMed]
  10. M. Zourob, S. Mohr, B. J. T. Brown, P. R. Fielden, M. McDonnell, and N. J. Goddard, “The development of a metal clad leaky waveguide sensor for the detection of particles,” Sens. Actuators B Chem.90(1-3), 296–307 (2003). [CrossRef]
  11. J. S. A. F. Bahrami and M. Mojahedi, “A highly optimized plasmon waveguide resonance biosensor,” in IEEE Photonics Conference (IEEE, 2012). [CrossRef]
  12. N. Skivesen, R. Horvath, and H. C. Pedersen, “Optimization of metal-clad waveguide sensors,” Sens. Actuators B Chem.106(2), 668–676 (2005). [CrossRef]
  13. T. Lebyedyeva, Y. Frolov, S. Kurlov, M. Budnyk, Y. Minov, P. Sutkovyi, and P. Shpylovyi, “Modeling and data processing for thin-film optical sensors,” in 6th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, IDAACS (2011), 119–124. [CrossRef]
  14. H. Zhang, K. S. Orosz, H. Takahashi, and S. S. Saavedra, “Broadband plasmon waveguide resonance spectroscopy for probing biological thin films,” Appl. Spectrosc.63(9), 1062–1067 (2009). [CrossRef] [PubMed]
  15. M. Zourob and N. J. Goddard, “Metal clad leaky waveguides for chemical and biosensing applications,” Biosens. Bioelectron.20(9), 1718–1727 (2005). [CrossRef] [PubMed]
  16. M. Piliarik and J. Homola, “Surface plasmon resonance (SPR) sensors: Approaching their limits?” Opt. Express17(19), 16505–16517 (2009). [CrossRef] [PubMed]
  17. F. Bahrami, M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “Dual polarization measurements in the hybrid plasmonic biosensors,” Plasmonics8(2), 465–473 (2012).
  18. A. Abbas, M. J. Linman, and Q. Cheng, “Sensitivity comparison of surface plasmon resonance and plasmon-waveguide resonance biosensors,” Sens. Actuators B Chem.156(1), 169–175 (2011). [CrossRef] [PubMed]
  19. S. G. Alasag, N. Cansever, and M. M. Aslan, “Sensitivity enhancement of coupled plasmon-waveguide resonance sensors with gold-silver-alumina layers,” in Proc. SPIE8424, Nanophotonics IV, 84243A (2012).
  20. J. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence (A Bradford Book, 1992).
  21. D. P. Edward, Handbook of Optical Constants of Solids (Academic Press, 1997).
  22. http://www.ssens.nl/ .
  23. G. Dyankov, M. Zekriti, and M. Bousmina, “Dual-mode surface-plasmon sensor based on bimetallic film,” Appl. Opt.51(13), 2451–2456 (2012). [CrossRef] [PubMed]
  24. J. J. Chyou, S. J. Chen, C. F. Shu, C. S. Chu, Z. H. Shih, and C. Y. Lin, “Fabrication and metrology of an electro-optic polymer light modulator based on waveguide-coupled surface plasmon resonance,” OPTICE44, 034001––034007 (2005).
  25. G. J. Kovacs and G. D. Scott, “Optical excitation of surface plasma waves in layered media,” Phys. Rev. B16(4), 1297–1311 (1977). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited