OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 18 — Sep. 9, 2013
  • pp: 20873–20879

Honeycomb-lattice plasmonic absorbers at NIR: anomalous high-order resonance

Yiting Chen, Jin Dai, Min Yan, and Min Qiu  »View Author Affiliations

Optics Express, Vol. 21, Issue 18, pp. 20873-20879 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1362 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We design, fabricate and characterize a plasmonic honeycomb lattice absorber with almost perfect absorption at 1140 nm over a wide incident angle range. This absorber also possesses a narrow-band, angle- and polarization-dependent high-order resonance in the short-wavelength range, with a bandwidth of 19 nm and angle sensitivity of 3 nm per degree. The nature of this high-order absorption band is analyzed through finite-element simulations. We believe it is due to Bragg coupling of the incident light to the backward-propagating surface plasmon polariton through the periodic modulation of the structure.Such fine absorption bands can find applications in plasmonic sensors and spectrally selective thermal emitters.

© 2013 OSA

OCIS Codes
(220.3740) Optical design and fabrication : Lithography
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

Original Manuscript: June 20, 2013
Revised Manuscript: August 18, 2013
Manuscript Accepted: August 20, 2013
Published: August 29, 2013

Yiting Chen, Jin Dai, Min Yan, and Min Qiu, "Honeycomb-lattice plasmonic absorbers at NIR: anomalous high-order resonance," Opt. Express 21, 20873-20879 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics1, 41–48 (2007). [CrossRef]
  2. D. Smith, J. Pendry, and M. Wiltshire, “Metamaterials and negative refractive index,” Science305, 788 (2004). [CrossRef] [PubMed]
  3. J. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85, 3966–3969 (2000). [CrossRef] [PubMed]
  4. M. Yan, W. Yan, and M. Qiu, “Cylindrical superlens by a coordinate transformation,” Phys. Rev. B78, 125113 (2008). [CrossRef]
  5. M. Yan, Z.C. Ruan, and M. Qiu, “Cylindrical invisibility cloak with simplified material parameters is inherently visible,” Phys. Rev. Lett.99, 233901 (2007). [CrossRef]
  6. J. Gansel, M. Thiel, M. Rill, M. Decker, K. Bade, V. Saile, G. Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325, 1513–1515 (2009). [CrossRef] [PubMed]
  7. N. Papasimakis, V. Fedotov, and N. Zheludev, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett.101, 253903 (2008). [CrossRef] [PubMed]
  8. Y. Ahn, J. Dunning, and J. Park, “Scanning photocurrent imaging and electronic band studies in silicon nanowire field effect transistors,” Nano Lett.5, 1367 (2005). [CrossRef] [PubMed]
  9. O. Hayden, R. Agarwal, and C. Lieber, “Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection,” Nat. Mater.5, 352 (2006). [CrossRef] [PubMed]
  10. P. Richards, “Bolometers for infrared and millimeter waves,” J. Appl. Phys.76,1 (1994). [CrossRef]
  11. M. Laroche, R. Carminati, and J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys.100, 063704 (2006). [CrossRef]
  12. S. Lin, J. Moreno, and J. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett.83, 380 (2003). [CrossRef]
  13. J. Hao, J. Wang, X. Liu, W J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96, 251104 (2010). [CrossRef]
  14. X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared Spatial and Frequency Selective Metamaterial with Near-Unity Absorbance,” Phys. Rev. Lett.104, 207403 (2010). [CrossRef] [PubMed]
  15. J. Wang, Y. Chen, J. Hao, M. Yan, and M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” J. Appl. Phys.109, 074510 (2010). [CrossRef]
  16. C. Hu, Z. Zhao, X. Chen, and X. Luo, “Realizing near-perfect absorption at visible frequencies,” Opt. Express17, 11039–11044 (2009). [CrossRef] [PubMed]
  17. A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett.11, 4366–4369 (2011). [CrossRef] [PubMed]
  18. M. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater.23, 5410–5414 (2011). [CrossRef] [PubMed]
  19. D. Han, Y. Lai, J. Zi, Z. Zhang, and C. Chan, “Dirac spectra and edge states in honeycomb plasmonic lattices,” Phys. Rev. Lett.102, 123904 (2009). [CrossRef] [PubMed]
  20. Y. Poo, R. Wu, Z. Lin, Y. Yang, and C. Chan, “Experimental realization of self-Guiding unidirectional electromagnetic edge states,” Phys. Rev. Lett.102, 093903 (2011). [CrossRef]
  21. T. Kelf, Y. Sugawara, and J. Baumberg, “Plasmonic Band gaps and trapped plasmons on nanostructured metal surfaces,” Phys. Rev. Lett.95, 116802 (2005). [CrossRef] [PubMed]
  22. T. Kelf, Y. Sugawara, R. Cole, and J. Baumberg, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B74, 245415 (2005). [CrossRef]
  23. M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Feng, and X. Luo, “Design principles for infrared wide-angle perfect absorber based on plasmonic structure,” Opt. Express.19, 17413–17420 (2011). [CrossRef] [PubMed]
  24. P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972). [CrossRef]
  25. E. Palik, Handbook of Optical Constants of Solids(Academic, New York, 1985).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited