OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 18 — Sep. 9, 2013
  • pp: 20880–20887

Compact polarizing beam splitter based on a metal-insulator-metal inserted into multimode interference coupler

Vuthy Chheang, Tae-Kyeong Lee, Geum-Yoon Oh, Hong-Seung Kim, Byeong-Hyeon Lee, Doo Gun Kim, and Young-Wan Choi  »View Author Affiliations

Optics Express, Vol. 21, Issue 18, pp. 20880-20887 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1693 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose and analyze a compact polarizing beam splitter (PBS) based on a metal-insulator-metal (MIM) structure inserted into a multimode interference coupler (MMI). Owing to the MIM structure, the TE polarized state is reflected by the cut-off condition while the TM polarized state is transmitted by the surface plasmon polariton, and the two polarized states can thus be separated. In this paper, the dependence of the reflected TE and transmitted TM field intensities on the MIM length and the gap thickness has been studied systematically. The proposed PBS structure, with a total size of 4 × 0.7 × 44 µm3 is designed with MIM length, gap thickness, and metal thickness of 0.6 µm, 0.5 µm, and 0.05 µm, respectively. In the designed PBS, the transmittance for the TM polarized light, reflectance for the TE polarized light, extinction ratio, and insertion losses of the TE and TM modes are obtained using a 3D finite-difference time-domain method to be 0.9, 0.88, 12.55 dB, and 1.1 dB and 0.9 dB, respectively. The designed PBS has a much shorter length, 44 µm, compared to previous PBS devices.

© 2013 OSA

OCIS Codes
(230.0230) Optical devices : Optical devices
(230.3120) Optical devices : Integrated optics devices
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optical Devices

Original Manuscript: July 1, 2013
Revised Manuscript: August 23, 2013
Manuscript Accepted: August 25, 2013
Published: August 29, 2013

Vuthy Chheang, Tae-Kyeong Lee, Geum-Yoon Oh, Hong-Seung Kim, Byeong-Hyeon Lee, Doo Gun Kim, and Young-Wan Choi, "Compact polarizing beam splitter based on a metal-insulator-metal inserted into multimode interference coupler," Opt. Express 21, 20880-20887 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. M. Hong, H. H. Ryoo, S. G. Lee, E.-H. Lee, D. Woo, and S. Kim, “Novel design of polarization splitter based on a quasi-state multimode interference coupler,” in Proceedings of CLEO 2002 Tech. Dig. 1, 194–195 (2002).
  2. J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E.-H. Lee, S.-G. Park, D. Woo, and S. Kim, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photon. Technol. Lett.15(1), 72–74 (2003). [CrossRef]
  3. L. B. Soldano, A. I. de Vreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, and F. H. Green, “Mach–Zehnder interferometer polarization splitter in InGaAsP–InP,” IEEE Photon. Technol. Lett.6(3), 402–405 (1994). [CrossRef]
  4. P. Wei and W. Wang, “A TE-TM mode splitter on lithium niobate using Ti, Ni, and MgO diffusions,” IEEE Photon. Technol. Lett.6(2), 245–248 (1994). [CrossRef]
  5. M. H. Hu, Z. Huang, R. Scarmozzino, M. Levy, and R. M. Osgood., “Tunable Mach–Zehnder polarization splitter using height-tapered Y-branches,” IEEE Photon. Technol. Lett.9(6), 773–775 (1997). [CrossRef]
  6. I. Kiyat, A. Aydinli, and N. Dagli, “A compact silicon-on-insulator polarization splitter,” IEEE Photon. Technol. Lett.17(1), 100–102 (2005). [CrossRef]
  7. C.-Y. Tai, S. H. Chang, and T. C. Chiu, “Design and analysis of an ultra-compact and ultra-wideband polarization beam splitter based on coupled plasmonic waveguide arrays,” IEEE Photon. Technol. Lett.19(19), 1448–1450 (2007). [CrossRef]
  8. L. Zhu, Y. Huang, and A. Yariv, “Integration of a multimode interference coupler with a corrugated sidewall Bragg grating in planar polymer waveguides,” IEEE Photon. Technol. Lett.18(6), 740–742 (2006). [CrossRef]
  9. S. Kim, G. P. Nordin, J. Cai, and J. Jiang, “Ultracompact high-efficiency polarizing beam splitter with a hybrid photonic crystal and conventional waveguide structure,” Opt. Lett.28(23), 2384–2386 (2003). [CrossRef] [PubMed]
  10. T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Design of a compact photonic-crystal-based polarizing beam splitter,” IEEE Photon. Technol. Lett.17(7), 1435–1437 (2005). [CrossRef]
  11. T. Yu, X. Jiang, Q. Liao, W. Qi, J. Yang, and M. Wang, “Self-imaging effect in photonic crystal multimode waveguides exhibiting no band gaps,” Chin. Opt. Lett.5(12), 690–692 (2007).
  12. Z. Qiang, W. Zhou, and R. A. Soref, “Optical add-drop filters based on photonic crystal ring resonators,” Opt. Express15(4), 1823–1831 (2007). [CrossRef] [PubMed]
  13. Y. Shi, D. Dai, and S. He, “Proposal for an ultra-compact polarization-beam splitter based on a photonic-crystal-assisted multimode interference coupler,” IEEE Photon. Technol. Lett.19(11), 825–827 (2007). [CrossRef]
  14. M. Djavid, A. Ghaffari, and M. S. Abrishamian, “Coupled mode analysis of photonic crystal add-drop filters based on ring resonators,” J. Opt. Soc. Am. B25(11), 1829–1832 (2008). [CrossRef]
  15. Y. Morita, Y. Tsuji, and K. Hirayama, “Proposal for a compact resonant-coupling-type polarization splitter based on photonic crystal waveguide with absolute photonic bandgap,” IEEE Photon. Technol. Lett.20(2), 93–95 (2008). [CrossRef]
  16. C. Son, B. Kim, J. Shin, and N. Dagli, “Very compact metal slab waveguide reflectors as integrated high reflectivity mirrors on high index contrast waveguides,” J. Lightwave Technol.29(19), 2999–3003 (2011). [CrossRef]
  17. L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: Principles and applications,” J. Lightwave Technol.13(4), 615–627 (1995). [CrossRef]
  18. J. Park, H. Kim, I.-M. Lee, S. Kim, J. Jung, and B. Lee, “Resonant tunneling of surface plasmon polariton in the plasmonic nano-cavity,” Opt. Express16(21), 16903–16915 (2008). [CrossRef] [PubMed]
  19. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Science & Business Media LLC), Chap. 2.
  20. T. Augustsson, “Bragg grating–assisted MMI-coupler for add-drop multiplexing,” J. Lightwave Technol.16(8), 1517–1522 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited