OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 18 — Sep. 9, 2013
  • pp: 20888–20899

Graphene-based tunable broadband hyperlens for far-field subdiffraction imaging at mid-infrared frequencies

Tian Zhang, Lin Chen, and Xun Li  »View Author Affiliations


Optics Express, Vol. 21, Issue 18, pp. 20888-20899 (2013)
http://dx.doi.org/10.1364/OE.21.020888


View Full Text Article

Enhanced HTML    Acrobat PDF (1689 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Considering the dielectric permittivity of graphene can be tuned to be negative by external electric field, we propose to construct alternating graphene/dielectric multilayer based optical hyperlens for far-field subdiffraction imaging at mid-infrared frequencies. For such a scheme, hyperbolic dispersion curve can be achieved under the condition that the thickness of dielectric layer is made comparable to that of graphene layer, which is capable of supporting the propagation of evanescent wave with large wave vector. Simulation results by finite-element method demonstrate that two point sources with separation far below the diffraction limit can be magnified by the systems to the extent that conventional far-field optical microscopy can further manipulate. Such a hyperlens has the advantage of operating in a wideband region due to the tunability of graphene’s dielectric permittivity as opposed to previous metal based hyperlens, enabling the potential applications in real-time super-resolution imaging, nanolithography, and sensing.

© 2013 OSA

OCIS Codes
(110.0180) Imaging systems : Microscopy
(160.1190) Materials : Anisotropic optical materials
(220.0220) Optical design and fabrication : Optical design and fabrication

ToC Category:
Imaging Systems

History
Original Manuscript: July 2, 2013
Revised Manuscript: August 11, 2013
Manuscript Accepted: August 22, 2013
Published: August 29, 2013

Citation
Tian Zhang, Lin Chen, and Xun Li, "Graphene-based tunable broadband hyperlens for far-field subdiffraction imaging at mid-infrared frequencies," Opt. Express 21, 20888-20899 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-18-20888


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Abbe, “Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung,” Arch. Mikrosk. Anat.9(1), 413–418 (1873). [CrossRef]
  2. U. Dürig, D. Pohl, and F. Rohner, “Near-field optical-scanning microscopy,” J. Appl. Phys.59(10), 3318–3327 (1986). [CrossRef]
  3. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003). [CrossRef] [PubMed]
  4. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008). [CrossRef]
  5. M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “Compact and silicon-on-insulator-compatible hybrid plasmonic TE-pass polarizer,” Opt. Lett.37(1), 55–57 (2012). [CrossRef] [PubMed]
  6. L. Chen, X. Li, G. P. Wang, W. Li, S. H. Chen, L. Xiao, and D. S. Gao, “A silicon-based 3-D hybrid long-range plasmonic waveguide for nanophotonic integration,” J. Lightwave Technol.30(1), 163–168 (2012). [CrossRef]
  7. L. Chen, T. Zhang, X. Li, and W. P. Huang, “Novel hybrid plasmonic waveguide consisting of two identical dielectric nanowires symmetrically placed on each side of a thin metal film,” Opt. Express20(18), 20535–20544 (2012). [CrossRef] [PubMed]
  8. L. Chen, X. Li, and G. P. Wang, “A hybrid long-range plasmonic waveguide with sub-wavelength confinement,” Opt. Commun.291, 400–404 (2013). [CrossRef]
  9. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett.93(13), 137404 (2004). [CrossRef] [PubMed]
  10. L. Chen and G. Wang, “Nanofocusing of light energy by ridged metal heterostructures,” Appl. Phys. B89(4), 573–577 (2007). [CrossRef]
  11. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000). [CrossRef] [PubMed]
  12. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308(5721), 534–537 (2005). [CrossRef] [PubMed]
  13. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: far-field imaging beyond the diffraction limit,” Opt. Express14(18), 8247–8256 (2006). [CrossRef] [PubMed]
  14. A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations,” Phys. Rev. B74(7), 075103 (2006). [CrossRef]
  15. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315(5819), 1686 (2007). [CrossRef] [PubMed]
  16. L. Chen, X. Zhou, and G. Wang, “V-shaped metal–dielectric multilayers for far-field subdiffraction imaging,” Appl. Phys. B92(2), 127–131 (2008). [CrossRef]
  17. L. Chen and G. P. Wang, “Pyramid-shaped hyperlenses for three-dimensional subdiffraction optical imaging,” Opt. Express17(5), 3903–3912 (2009). [CrossRef] [PubMed]
  18. K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature450(7168), 397–401 (2007). [CrossRef] [PubMed]
  19. Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett.100(25), 256803 (2008). [CrossRef] [PubMed]
  20. L. Chen, G. P. Wang, X. Li, W. Li, Y. Shen, J. Lai, and S. Chen, “Broadband slow-light in graded-grating-loaded plasmonic waveguides at telecom frequencies,” Appl. Phys. B104(3), 653–657 (2011). [CrossRef]
  21. H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow trapping in hyperbolic metamaterial waveguide,” Sci. Rep.3, 1249 (2013). [CrossRef] [PubMed]
  22. Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett.7(11), 3360–3365 (2007). [CrossRef] [PubMed]
  23. S. Kawata, A. Ono, and P. Verma, “Subwavelength colour imaging with a metallic nanolens,” Nat. Photonics2(7), 438–442 (2008). [CrossRef]
  24. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Semiclassical theory of the hyperlens,” J. Opt. Soc. Am. A24(10), A52–A59 (2007). [CrossRef] [PubMed]
  25. H. Lee, Z. Liu, Y. Xiong, C. Sun, and X. Zhang, “Development of optical hyperlens for imaging below the diffraction limit,” Opt. Express15(24), 15886–15891 (2007). [CrossRef] [PubMed]
  26. J. Li, L. Fok, X. Yin, G. Bartal, and X. Zhang, “Experimental demonstration of an acoustic magnifying hyperlens,” Nat. Mater.8(12), 931–934 (2009). [CrossRef] [PubMed]
  27. X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater.7(6), 435–441 (2008). [CrossRef] [PubMed]
  28. D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat Commun3, 1205 (2012). [CrossRef] [PubMed]
  29. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science332(6035), 1291–1294 (2011). [CrossRef] [PubMed]
  30. B. Wang, X. Zhang, F. J. García-Vidal, X. Yuan, and J. Teng, “Strong coupling of surface plasmon polaritons in monolayer graphene sheet arrays,” Phys. Rev. Lett.109(7), 073901 (2012). [CrossRef] [PubMed]
  31. A. Grigorenko, M. Polini, and K. Novoselov, “Graphene plasmonics,” Nat. Photonics6(11), 749–758 (2012). [CrossRef]
  32. A. Ramasubramaniam, D. Naveh, and E. Towe, “Tunable band gaps in bilayer graphene-BN heterostructures,” Nano Lett.11(3), 1070–1075 (2011). [CrossRef] [PubMed]
  33. R. Quhe, J. Zheng, G. Luo, Q. Liu, R. Qin, J. Zhou, D. Yu, S. Nagase, W.-N. Mei, Z. Gao, and J. Lu, “Tunable and sizable band gap of single-layer graphene sandwiched between hexagonal boron nitride,” NPG Asia Mater.4(2), e6 (2012). [CrossRef]
  34. I. V. Iorsh, I. S. Mukhin, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Hyperbolic metamaterials based on multilayer graphene structures,” Phys. Rev. B87(7), 075416 (2013). [CrossRef]
  35. M. A. Othman, C. Guclu, and F. Capolino, “Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption,” Opt. Express21(6), 7614–7632 (2013). [CrossRef] [PubMed]
  36. E. H. Hwang and S. Das Sarma, “Dielectric function, screening, and plasmons in two-dimensional graphene,” Phys. Rev. B75(20), 205418 (2007). [CrossRef]
  37. E. H. Hwang, S. Adam, and S. D. Sarma, “Carrier transport in two-dimensional graphene layers,” Phys. Rev. Lett.98(18), 186806 (2007). [CrossRef] [PubMed]
  38. E. V. Castro, K. S. Novoselov, S. V. Morozov, N. M. Peres, J. M. dos Santos, J. Nilsson, F. Guinea, A. K. Geim, and A. H. Neto, “Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect,” Phys. Rev. Lett.99(21), 216802 (2007). [CrossRef] [PubMed]
  39. A. H. Castro Neto, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys.81(1), 109–162 (2009). [CrossRef]
  40. A. Andryieuski, A. V. Lavrinenko, and D. N. Chigrin, “Graphene hyperlens for terahertz radiation,” Phys. Rev. B86(12), 121108 (2012). [CrossRef]
  41. J. Wang, Y. Xu, H. Chen, and B. Zhang, “Ultraviolet dielectric hyperlens with layered graphene and boron nitride,” J. Mater. Chem.22(31), 15863–15868 (2012). [CrossRef]
  42. P. Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano5(7), 5855–5863 (2011). [CrossRef] [PubMed]
  43. B. Wang, X. Zhang, X. Yuan, and J. Teng, “Optical coupling of surface plasmons between graphene sheets,” Appl. Phys. Lett.100(13), 131111 (2012). [CrossRef]
  44. E. Palik, Handbook of Optical Constants of Solids (Academic, 1991).
  45. J. A. Robinson, M. Labella, K. A. Trumbull, X. Weng, R. Cavelero, T. Daniels, Z. Hughes, M. Hollander, M. Fanton, and D. Snyder, “Epitaxial graphene materials integration: effects of dielectric overlayers on structural and electronic properties,” ACS Nano4(5), 2667–2672 (2010). [CrossRef] [PubMed]
  46. H. Alles, J. Aarik, J. Kozlova, A. Niilisk, R. Rammula, and V. Sammelselg, “Atomic layer deposition of high-k oxides on graphene,” in Graphene–Synthesis, Characterization, Properties and Applications, J. R. Gong, ed. (InTech, 2011), pp. 99–114.
  47. T. Mohiuddin, A. Lombardo, R. Nair, A. Bonetti, G. Savini, R. Jalil, N. Bonini, D. Basko, C. Galiotis, N. Marzari, K. S. Novoselov, A. Geim, and A. Ferrari, “Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation,” Phys. Rev. B79(20), 205433 (2009). [CrossRef]
  48. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (CUP Archive, 1999).
  49. K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Two-dimensional atomic crystals,” Proc. Natl. Acad. Sci. U.S.A.102(30), 10451–10453 (2005). [CrossRef] [PubMed]
  50. N. Petrone, C. R. Dean, I. Meric, A. M. van der Zande, P. Y. Huang, L. Wang, D. Muller, K. L. Shepard, and J. Hone, “Chemical vapor deposition-derived graphene with electrical performance of exfoliated graphene,” Nano Lett.12(6), 2751–2756 (2012). [CrossRef] [PubMed]
  51. E. Moreau, S. Godey, F. Ferrer, D. Vignaud, X. Wallart, J. Avila, M. Asensio, F. Bournel, and J.-J. Gallet, “Graphene growth by molecular beam epitaxy on the carbon-face of SiC,” Appl. Phys. Lett.97(24), 241907 (2010). [CrossRef]
  52. J. Zhang, J. Xiao, X. Meng, C. Monroe, Y. Huang, and J.-M. Zuo, “Free folding of suspended graphene sheets by random mechanical stimulation,” Phys. Rev. Lett.104(16), 166805 (2010). [CrossRef] [PubMed]
  53. K.-J. Lee, A. P. Chandrakasan, and J. Kong, “Breakdown current density of CVD-grown multilayer graphene interconnects,” IEEE Electron Device Lett.32(4), 557–559 (2011). [CrossRef]
  54. L. Ji, H. Zheng, A. Ismach, Z. Tan, S. Xun, E. Lin, V. Battaglia, V. Srinivasan, and Y. Zhang, “Graphene/Si multilayer structure anodes for advanced half and full lithium-ion cells,” Nano Energy1(1), 164–171 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited