OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 18 — Sep. 9, 2013
  • pp: 20900–20910

Surface phonon-polariton enhanced optical forces in silicon carbide nanostructures

Dongfang Li, Nabil M. Lawandy, and Rashid Zia  »View Author Affiliations

Optics Express, Vol. 21, Issue 18, pp. 20900-20910 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2966 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The enhanced optical forces induced by surface phonon-polariton (SPhP) modes are investigated in different silicon carbide (SiC) nanostructures. Specifically, we calculate optical forces using the Maxwell stress tensor for three different geometries: spherical particles, slab waveguides, and rectangular waveguides. We show that SPhP modes in SiC can produce very large forces, more than one order of magnitude larger than the surface plasmon-polariton (SPP) forces in analogous metal nanostructures. The material and geometric basis for these large optical forces are examined in terms of dispersive permittivity, separation distance, and operating wavelength.

© 2013 OSA

OCIS Codes
(220.4880) Optical design and fabrication : Optomechanics
(230.7370) Optical devices : Waveguides
(240.5420) Optics at surfaces : Polaritons
(240.6680) Optics at surfaces : Surface plasmons
(240.6690) Optics at surfaces : Surface waves
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optics at Surfaces

Original Manuscript: June 26, 2013
Revised Manuscript: August 15, 2013
Manuscript Accepted: August 16, 2013
Published: August 30, 2013

Virtual Issues
Vol. 8, Iss. 10 Virtual Journal for Biomedical Optics

Dongfang Li, Nabil M. Lawandy, and Rashid Zia, "Surface phonon-polariton enhanced optical forces in silicon carbide nanostructures," Opt. Express 21, 20900-20910 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Van Thourhout and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photonics4(4), 211–217 (2010). [CrossRef]
  2. J. Ma and M. L. Povinelli, “Applications of optomechanical effects for on-chip manipulation of light signals,” Curr. Opin. Solid State Mater. Sci.16(2), 82–90 (2012). [CrossRef]
  3. M. L. Povinelli, M. Loncar, M. Ibanescu, E. J. Smythe, S. G. Johnson, F. Capasso, and J. D. Joannopoulos, “Evanescent-wave bonding between optical waveguides,” Opt. Lett.30(22), 3042–3044 (2005). [CrossRef] [PubMed]
  4. M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature456(7221), 480–484 (2008). [CrossRef] [PubMed]
  5. F. Riboli, A. Recati, M. Antezza, and I. Carusotto, “Radiation induced force between two planar waveguides,” Eur. Phys. J. D46(1), 157–164 (2008). [CrossRef]
  6. M. Li, W. H. P. Pernice, and H. X. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics3(8), 464–468 (2009). [CrossRef]
  7. L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett.79(4), 645–648 (1997). [CrossRef]
  8. J. R. Arias-González and M. Nieto-Vesperinas, “Optical forces on small particles: attractive and repulsive nature and plasmon-resonance conditions,” J. Opt. Soc. Am. A20(7), 1201–1209 (2003). [CrossRef] [PubMed]
  9. A. J. Hallock, P. L. Redmond, and L. E. Brus, “Optical forces between metallic particles,” Proc. Natl. Acad. Sci. U.S.A.102(5), 1280–1284 (2005). [CrossRef] [PubMed]
  10. R. Quidant, D. Petrov, and G. Badenes, “Radiation forces on a Rayleigh dielectric sphere in a patterned optical near field,” Opt. Lett.30(9), 1009–1011 (2005). [CrossRef] [PubMed]
  11. É. Lamothe, G. Lévêque, and O. J. F. Martin, “Optical forces in coupled plasmonic nanosystems: near field and far field interaction regimes,” Opt. Express15(15), 9631–9644 (2007). [CrossRef] [PubMed]
  12. B. Sepúlveda, J. Alegret, and M. Käll, “Nanometric control of the distance between plasmonic nanoparticles using optical forces,” Opt. Express15(22), 14914–14920 (2007). [CrossRef] [PubMed]
  13. A. S. Zelenina, R. Quidant, and M. Nieto-Vesperinas, “Enhanced optical forces between coupled resonant metal nanoparticles,” Opt. Lett.32(9), 1156–1158 (2007). [CrossRef] [PubMed]
  14. P. Chu and D. L. Mills, “Laser-induced forces in metallic nanosystems: the role of plasmon resonances,” Phys. Rev. Lett.99(12), 127401 (2007). [CrossRef] [PubMed]
  15. P. Chu and D. L. Mills, “Electromagnetic response of nanosphere pairs: collective plasmon resonances, enhanced fields, and laser-induced forces,” Phys. Rev. B77(4), 045416 (2008). [CrossRef]
  16. P. Chu and D. L. Mills, “Laser-induced forces in metallic nanosystems: the role of plasmon resonances,” Phys. Rev. Lett.99(12), 127401 (2007). [CrossRef] [PubMed]
  17. L. Huang and O. J. F. Martin, “Reversal of the optical force in a plasmonic trap,” Opt. Lett.33(24), 3001–3003 (2008). [CrossRef] [PubMed]
  18. J. Ng, R. Tang, and C. T. Chan, “Electrodynamics study of plasmonic bonding and antibonding forces in a bisphere,” Phys. Rev. B77(19), 195407 (2008). [CrossRef]
  19. D. Woolf, M. Loncar, and F. Capasso, “The forces from coupled surface plasmon polaritons in planar waveguides,” Opt. Express17(22), 19996–20011 (2009). [CrossRef] [PubMed]
  20. C. G. Huang and L. Zhu, “Enhanced optical forces in 2D hybrid and plasmonic waveguides,” Opt. Lett.35(10), 1563–1565 (2010). [CrossRef] [PubMed]
  21. A. Bonakdar, J. Kohoutek, D. Dey, and H. Mohseni, “Optomechanical nanoantenna,” Opt. Lett.37(15), 3258–3260 (2012). [CrossRef] [PubMed]
  22. V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, “Extended organization of colloidal microparticles by surface plasmon polariton excitation,” Phys. Rev. B73(8), 085417 (2006). [CrossRef]
  23. G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface plasmon radiation forces,” Phys. Rev. Lett.96(23), 238101 (2006). [CrossRef] [PubMed]
  24. M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys.3(7), 477–480 (2007). [CrossRef]
  25. A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics2(6), 365–370 (2008). [CrossRef]
  26. M. Righini, G. Volpe, C. Girard, D. Petrov, and R. Quidant, “Surface plasmon optical tweezers: tunable Optical Manipulation in the Femtonewton Range,” Phys. Rev. Lett.100(18), 186804 (2008). [CrossRef] [PubMed]
  27. K. Wang, E. Schonbrun, and K. B. Crozier, “Propulsion of gold nanoparticles with surface plasmon polaritons: evidence of enhanced optical force from near-field coupling between gold particle and gold film,” Nano Lett.9(7), 2623–2629 (2009). [CrossRef] [PubMed]
  28. K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Scannable plasmonic trapping using a gold stripe,” Nano Lett.10(9), 3506–3511 (2010). [CrossRef] [PubMed]
  29. M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics5(6), 349–356 (2011). [CrossRef]
  30. J. Kohoutek, D. Dey, A. Bonakdar, R. Gelfand, A. Sklar, O. G. Memis, and H. Mohseni, “Opto-mechanical force mapping of deep subwavelength plasmonic modes,” Nano Lett.11(8), 3378–3382 (2011). [CrossRef] [PubMed]
  31. K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun.2, 469 (2011). [CrossRef] [PubMed]
  32. M. F. Ashby, Materials Selection in Mechanical Design (Butterworth-Heinemann, 2005).
  33. Y. T. Yang, K. L. Ekinci, X. M. H. Huang, L. M. Schiavone, M. L. Roukes, C. A. Zorman, and M. Mehregany, “Monocrystalline silicon carbide nanoelectromechanical systems,” Appl. Phys. Lett.78(2), 162–164 (2001). [CrossRef]
  34. X. M. Henry Huang, C. A. Zorman, M. Mehregany, and M. L. Roukes, “Nanoelectromechanical systems: nanodevice motion at microwave frequencies,” Nature421(6922), 496–496 (2003). [CrossRef] [PubMed]
  35. S. C. Jun, J. H. Cho, W. K. Kim, Y. M. Jung, S. Hwang, S. Shin, J. Y. Kang, J. Shin, I. Song, J. Y. Choi, S. Lee, and J. M. Kim, “Resonance properties of 3C-SiC nanoelectromechanical resonator in room-temperature magnetomotive transduction,” IEEE Electron Device Lett.30(10), 1042–1044 (2009). [CrossRef]
  36. H. Mutschke, A. C. Andersen, D. Clement, T. Henning, and G. Peiter, “Infrared properties of SiC particles,” Astron. Astrophys.345, 187–202 (1999).
  37. R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light matter interaction at the nanometre scale,” Nature418(6894), 159–162 (2002). [CrossRef] [PubMed]
  38. T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science313(5793), 1595–1595 (2006). [CrossRef] [PubMed]
  39. J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. P. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature416(6876), 61–64 (2002). [CrossRef] [PubMed]
  40. Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature444(7120), 740–743 (2006). [CrossRef] [PubMed]
  41. J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics3(11), 658–661 (2009). [CrossRef]
  42. J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett.99(10), 107401 (2007). [CrossRef] [PubMed]
  43. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt.37(22), 5271–5283 (1998). [CrossRef] [PubMed]
  44. P. K. Aravind, A. Nitzan, and H. Metiu, “The interaction between electromagnetic resonances and its role in spectroscopic studies of molecules adsorbed on colloidal particles or metal spheres,” Surf. Sci.110(1), 189–204 (1981). [CrossRef]
  45. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).
  46. P. Lusse, P. Stuwe, J. Schule, and H. G. Unger, “Analysis of vectorial mode fields in optical waveguides by a new finite-difference method,” J. Lightwave Technol.12(3), 487–494 (1994). [CrossRef]
  47. R. D. Kekatpure, A. C. Hryciw, E. S. Barnard, and M. L. Brongersma, “Solving dielectric and plasmonic waveguide dispersion relations on a pocket calculator,” Opt. Express17(26), 24112–24129 (2009). [CrossRef] [PubMed]
  48. X. D. Yang, Y. M. Liu, R. F. Oulton, X. B. Yin, and X. A. Zhang, “Optical forces in hybrid plasmonic waveguides,” Nano Lett.11(2), 321–328 (2011). [CrossRef] [PubMed]
  49. H. Li, J. W. Noh, Y. Chen, and M. Li, “Enhanced optical forces in integrated hybrid plasmonic waveguides,” Opt. Express21(10), 11839–11851 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited