OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 18 — Sep. 9, 2013
  • pp: 21027–21038

Fluoro-graphene: nonlinear optical properties

N. Liaros, A. B. Bourlinos, R. Zboril, and S. Couris  »View Author Affiliations

Optics Express, Vol. 21, Issue 18, pp. 21027-21038 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3240 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In the present work, we report on the investigation of the third-order nonlinear optical response of graphene fluoride dispersed in DMF and also of fluorosurfactant-stabilized graphene fluoride dispersed in water under visible (532nm) and infrared (1064nm), picosecond and nanosecond laser excitation. Both graphene derivatives were found to exhibit large nonlinear optical response, while significant differences on their nonlinear optical response have been observed (e.g. different sign of nonlinear refraction and absorption). These findings highlight the important role of the degree of fluorination of the graphene sheets on their optical and electronic properties. Furthermore, DMF dispersed graphene fluoride was found to exhibit important broadband optical limiting action under nanosecond laser excitation, making it promising candidate for optical limiting applications.

© 2013 OSA

OCIS Codes
(160.4330) Materials : Nonlinear optical materials
(160.4670) Materials : Optical materials
(160.4760) Materials : Optical properties
(160.4890) Materials : Organic materials
(190.4400) Nonlinear optics : Nonlinear optics, materials
(190.4710) Nonlinear optics : Optical nonlinearities in organic materials

ToC Category:

Original Manuscript: June 24, 2013
Revised Manuscript: August 7, 2013
Manuscript Accepted: August 7, 2013
Published: August 30, 2013

N. Liaros, A. B. Bourlinos, R. Zboril, and S. Couris, "Fluoro-graphene: nonlinear optical properties," Opt. Express 21, 21027-21038 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S.  Tatsuura, M.  Furuki, Y.  Sato, I.  Iwasa, M.  Tian, H.  Mitsu, “Semiconductor carbon nanotubes as ultrafast switching materials for optical telecommunications,” Adv. Mater. 15(6), 534–537 (2003). [CrossRef]
  2. E.  Koudoumas, O.  Kokkinaki, M.  Konstantaki, S.  Couris, S.  Korovin, P.  Detkov, V.  Kuznetsov, S.  Pimenov, V.  Pustovoi, “Onion-like carbon and diamond nanoparticles for optical limiting,” Chem. Phys. Lett. 357(5–6), 336–340 (2002). [CrossRef]
  3. F.  Kazjar, C.  Taliani, R.  Zamboni, S.  Rossini, R.  Danieli, “Nonlinear optical properties of fullerenes,” Synth. Met. 77(1–3), 257–263 (1996).
  4. G. Y.  Guo, K. C.  Chu, D. S.  Wang, C. G.  Duan, “Linear and nonlinear optical properties of carbon nanotubes from first-principles calculations,” Phys. Rev. B Condens. Matter 69(20), 205416 (2004). [CrossRef]
  5. Y. P.  Sun, J. E.  Riggs, “Organic and inorganic optical limiting materials. From fullerenes to nanoparticles,” Int. Rev. Phys. Chem. 18(1), 43–90 (1999). [CrossRef]
  6. V.  Yong, J. M.  Tour, “Theoretical efficiency of nanostructured graphene-based photovoltaics,” Small 6(2), 313–318 (2010). [CrossRef] [PubMed]
  7. J.  Wang, Y.  Hernandez, M.  Lotya, J. N.  Coleman, W. J.  Blau, “Broadband nonlinear optical response of graphene dispersions,” Adv. Mater. 21(23), 2430–2435 (2009). [CrossRef]
  8. K. S.  Novoselov, A. K.  Geim, S. V.  Morozov, D.  Jiang, Y.  Zhang, S. V.  Dubonos, I. V.  Grigorieva, A. A.  Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004). [CrossRef] [PubMed]
  9. F.  Bonaccorso, Z.  Sun, T.  Hasan, A. C.  Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010). [CrossRef]
  10. K. P.  Loh, Q.  Bao, G.  Eda, M.  Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2(12), 1015–1024 (2010). [CrossRef] [PubMed]
  11. T.  Kuila, S.  Bose, A. K.  Mishra, P.  Khanra, N. H.  Kim, J. H.  Lee, “Chemical functionalization of graphene and its applications,” Prog. Mater. Sci. 57(7), 1061–1105 (2012). [CrossRef]
  12. Y.  Xu, Z.  Liu, X.  Zhang, Y.  Wang, J.  Tian, Y.  Huang, Y.  Ma, X.  Zhang, Y.  Chen, “A graphene hybrid material covalently functionalized with porphyrin: Synthesis and optical limiting property,” Adv. Mater. 21(12), 1275–1279 (2009). [CrossRef]
  13. R.  Zbořil, F.  Karlický, A. B.  Bourlinos, T. A.  Steriotis, A. K.  Stubos, V.  Georgakilas, K.  Šafářová, D.  Jančík, C.  Trapalis, M.  Otyepka, “Graphene Fluoride: A stable stoichiometric graphene derivative and its chemical conversion to graphene,” Small 6(24), 2885–2891 (2010). [CrossRef] [PubMed]
  14. O.  Leenaerts, H.  Peelaers, A. D.  Hernandez-Nieves, B.  Partoens, F. M.  Peeters, “First principles investigation of graphene fluoride and graphane,” Phys. Rev. B Condens. Matter 82(19), 195436 (2010). [CrossRef]
  15. A. B.  Bourlinos, A.  Bakandritsos, N.  Liaros, S.  Couris, K.  Safarova, M.  Otyepka, R.  Zboril, “Water dispersible functionalized graphene fluoride with significant nonlinear optical response,” Chem. Phys. Lett. 543, 101–105 (2012). [CrossRef]
  16. A. B.  Bourlinos, V.  Georgakilas, R.  Zboril, D.  Jancik, M. A.  Karakassides, A.  Stassinopoulos, D.  Anglos, E. P.  Giannelis, “Reaction of graphite fluoride with NaOH-KOH eutectic,” J. Fluor. Chem. 129(8), 720–724 (2008). [CrossRef]
  17. A. B.  Bourlinos, K.  Safarova, K.  Siskova, R.  Zbořil, “The production of chemically converted graphenes from graphene fluoride,” Carbon 50(3), 1425–1428 (2012). [CrossRef]
  18. M.  Sheik-Bahae, A. A.  Said, T. H.  Wei, D.  Hagan, E. W.  Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990). [CrossRef]
  19. Y.  Gao, X.  Zhang, Y.  Li, H.  Liu, Y.  Wang, Q.  Chang, W.  Jiao, Y.  Song, “Saturable absorption and reverse saturable absorption in platinum nanoparticles,” Opt. Commun. 251(4-6), 429–433 (2005). [CrossRef]
  20. D. S.  Corrêa, L.  De Boni, L.  Misoguti, I.  Cohanoschi, F. E.  Hernandez, C. R.  Mendonça, “Z-scan theoretical analysis for three-, for- and five-photon absorption,” Opt. Commun. 277(2), 440–445 (2007). [CrossRef]
  21. N.  Venkatram, R.  Sathyavathi, D. N.  Rao, “Size dependent multiphoton absorption and refraction of CdSe nanoparticles,” Opt. Express 15(19), 12258–12263 (2007). [CrossRef] [PubMed]
  22. M.  Samoc, J. P.  Morrall, G. T.  Dalton, M. P.  Cifuentes, M. G.  Humphrey, “Two-photon and three-photon absorption in an organometallic dendrimer,” Angew. Chem. Int. Ed. Engl. 46(5), 731–733 (2007). [CrossRef] [PubMed]
  23. M. G.  Murali, U.  Dalimba, K.  Sridharan, “Synthesis, characterization, and nonlinear optical properties of donor-acceptor conjugated polymers and polymer/Ag nanocomposites,” J. Mater. Sci. 47(23), 8022–8034 (2012). [CrossRef]
  24. N.  Liaros, P.  Aloukos, A.  Kolokithas-Ntoukas, A.  Bakandritsos, T.  Szabo, R.  Zboril, S.  Couris, “Nonlinear Optical Properties and Broadband Optical Power Limiting Action of Graphene Oxide Colloids,” J. Phys. Chem. C 117(13), 6842–6850 (2013). [CrossRef]
  25. R.  Zaleśny, O.  Loboda, K.  Iliopoulos, G.  Chatzikyriakos, S.  Couris, G.  Rotas, N.  Tagmatarchis, A.  Avramopoulos, M. G.  Papadopoulos, “Linear and nonlinear optical properties of triphenylamine-functionalized C60: insights from theory and experiment,” Phys. Chem. Chem. Phys. 12(2), 373–381 (2009). [CrossRef] [PubMed]
  26. G.  Eda, M.  Chhowalla, “Chemically Derived Graphene Oxide: Towards Large-Area Thin-Film Electronics and Optoelectronics,” Adv. Mater. 22(22), 2392–2415 (2010). [CrossRef] [PubMed]
  27. L.  Cao, S.  Sahu, P.  Anilkumar, C. Y.  Kong, Y.-P.  Sun, “Linear and nonlinear optical properties of modified graphene-based materials,” MRS Bull. 37(12), 1283–1289 (2012). [CrossRef]
  28. P.  Chantharasupawong, R.  Philip, N. T.  Narayanan, P. M.  Sudeep, A.  Mathkar, P. M.  Ajayan, J.  Thomas, “Optical power limiting in fluorinated graphene oxide: an insight into the nonlinear optical properties,” J. Phys. Chem. C 116(49), 25955–25961 (2012). [CrossRef]
  29. A.  Mathkar, D.  Tozier, P.  Cox, P.  Ong, C.  Galande, K.  Balakrishnan, A. L. M.  Reddy, P. M.  Ajayan, “Controlled, Stepwise Reduction and Band Gap Manipulation of Graphene Oxide,” J. Phys. Chem. Lett. 3(8), 986–991 (2012). [CrossRef]
  30. P.  Chantharasupawong, R.  Philip, T.  Endo, J.  Thomas, “Enhanced optical limiting in nanosized mixed zinc ferrites,” Appl. Phys. Lett. 100(22), 221108 (2012). [CrossRef]
  31. H. Y.  Liu, Z. F.  Hou, C. H.  Hu, Y.  Yang, Z. Z.  Zhu, “Electronic and Magnetic Properties of Fluorinated Graphene with Different Coverage of Fluorine,” J. Phys. Chem. C 116(34), 18193–18201 (2012). [CrossRef]
  32. J. T.  Robinson, J. S.  Burgess, C. E.  Junkermeier, S. C.  Badescu, T. L.  Reinecke, F. K.  Perkins, M. K.  Zalalutdniov, J. W.  Baldwin, J. C.  Culbertson, P. E.  Sheehan, E. S.  Snow, “Properties of fluorinated graphene films,” Nano Lett. 10(8), 3001–3005 (2010). [CrossRef] [PubMed]
  33. R.  DeSalvo, A. A.  Said, D. J.  Hagan, E. W.  Van Stryland, M.  Sheik-Bahae, “Infrared to Ultraviolet Measurements of Two-Photon Absorption and n2 in Wide Bandgap Solids,” IEEE J. Quantum Electron. 32(8), 1324–1333 (1996). [CrossRef]
  34. D. N.  Christodoulides, I. C.  Khoo, G. J.  Salamo, G. I.  Stegeman, E. W.  Van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudes,” Adv. Opt. Photon. 2(1), 60–200 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited