OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 18 — Sep. 9, 2013
  • pp: 21039–21055

Calibration methods for division-of-focal-plane polarimeters

S. Bear Powell and Viktor Gruev  »View Author Affiliations

Optics Express, Vol. 21, Issue 18, pp. 21039-21055 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1768 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Division-of-focal plane (DoFP) imaging polarimeters are useful instruments for measuring polarization information for a variety of applications. Recent advances in nanofabrication have enabled the practical manufacture of DoFP sensors for the visible spectrum. These sensors are made by integrating nanowire polarization filters directly with an imaging array, and size variations of the nanowires due to fabrication can cause the optical properties of the filters to vary up to 20% across the imaging array. If left unchecked, these variations introduce significant errors when reconstructing the polarization image. Calibration methods offer a means to correct these errors. This work evaluates a scalar and matrix calibration derived from a mathematical model of the polarimeter behavior. The methods are evaluated quantitatively with an existing DoFP polarimeter under varying illumination intensity and angle of linear polarization.

© 2013 OSA

OCIS Codes
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(230.5440) Optical devices : Polarization-selective devices
(260.5430) Physical optics : Polarization
(110.5405) Imaging systems : Polarimetric imaging

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: July 9, 2013
Revised Manuscript: August 10, 2013
Manuscript Accepted: August 10, 2013
Published: August 30, 2013

S. Bear Powell and Viktor Gruev, "Calibration methods for division-of-focal-plane polarimeters," Opt. Express 21, 21039-21055 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. H. Goldstein, Polarized light, 3rd ed. (CRC Press, Boca Raton, FL, 2011), pp. xxi, 770 p.
  2. J. S.  Tyo, D. L.  Goldstein, D. B.  Chenault, J. A.  Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45(22), 5453–5469 (2006). [CrossRef] [PubMed]
  3. S. Shwartz, E. Namer, and Y. Y. Schechner, “Blind Haze Separation,” in Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on, 2006), 1984–1991. [CrossRef]
  4. T.  Treibitz, Y. Y.  Schechner, “Active Polarization Descattering,” IEEE Trans. Pattern Anal. Mach. Intell. 31(3), 385–399 (2009). [CrossRef] [PubMed]
  5. J. L.  Deuzé, F. M.  Bréon, C.  Devaux, P.  Goloub, M.  Herman, B.  Lafrance, F.  Maignan, A.  Marchand, F.  Nadal, G.  Perry, D.  Tanré, “Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements,” J. Geophys. Res., D, Atmospheres 106(D5), 4913–4926 (2001). [CrossRef]
  6. E.  Puttonen, J.  Suomalainen, T.  Hakala, J.  Peltoniemi, “Measurement of Reflectance Properties of Asphalt Surfaces and Their Usability as Reference Targets for Aerial Photos,” IEEE Trans. Geosci. Remote Sens. 47(7), 2330–2339 (2009). [CrossRef]
  7. D. H.  Goldstein, “Polarization properties of Scarabaeidae,” Appl. Opt. 45(30), 7944–7950 (2006). [CrossRef] [PubMed]
  8. P.  Brady, M.  Cummings, “Differential Response to Circularly Polarized Light by the Jewel Scarab Beetle Chrysina gloriosa,” Am. Nat. 175(5), 614–620 (2010). [CrossRef] [PubMed]
  9. T. W.  Cronin, N.  Shashar, R. L.  Caldwell, J.  Marshall, A. G.  Cheroske, T.-H.  Chiou, “Polarization Vision and Its Role in Biological Signaling,” Integr. Comp. Biol. 43(4), 549–558 (2003). [CrossRef] [PubMed]
  10. N.  Shashar, R.  Hagan, J. G.  Boal, R. T.  Hanlon, “Cuttlefish use polarization sensitivity in predation on silvery fish,” Vision Res. 40(1), 71–75 (2000). [CrossRef] [PubMed]
  11. A.  Sweeney, C.  Jiggins, S.  Johnsen, “Insect communication: Polarized light as a butterfly mating signal,” Nature 423(6935), 31–32 (2003). [CrossRef] [PubMed]
  12. G. Horváth and D. Varjú, Polarized light in animal vision: polarization patterns in nature (Springer, 2004).
  13. C.  Paddock, T.  Youngs, E.  Eriksen, R.  Boyce, “Validation of wall thickness estimates obtained with polarized light microscopy using multiple fluorochrome labels: correlation with erosion depth estimates obtained by lamellar counting,” Bone 16(3), 381–383 (1995). [CrossRef] [PubMed]
  14. P. B.  Canham, H. M.  Finlay, J. G.  Dixon, S. E.  Ferguson, “Layered collagen fabric of cerebral aneurysms quantitatively assessed by the universal stage and polarized light microscopy,” Anat. Rec. 231(4), 579–592 (1991). [CrossRef] [PubMed]
  15. E.  Salomatina-Motts, V.  Neel, A.  Yaroslavskaya, “Multimodal polarization system for imaging skin cancer,” Opt. Spectrosc. 107(6), 884–890 (2009). [CrossRef]
  16. M.  Anastasiadou, A. D.  Martino, D.  Clement, F.  Liège, B.  Laude‐Boulesteix, N.  Quang, J.  Dreyfuss, B.  Huynh, A.  Nazac, L.  Schwartz, H.  Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi 5(5c), 1423–1426 (2008). [CrossRef]
  17. Y.  Liu, T.  York, W.  Akers, G.  Sudlow, V.  Gruev, S.  Achilefu, “Complementary fluorescence-polarization microscopy using division-of-focal-plane polarization imaging sensor,” J. Biomed. Opt. 17(11), 116001 (2012). [CrossRef] [PubMed]
  18. V. V. Tuchin, L. V. Wang, and D. A. Zimnyakov, Optical polarization in biomedical applications (Springer, 2006).
  19. R.  Walraven, “Polarization imagery,” Opt. Eng. 20(1), 200114 (1981). [CrossRef]
  20. J. E.  Solomon, “Polarization imaging,” Appl. Opt. 20(9), 1537–1544 (1981). [CrossRef] [PubMed]
  21. R. M.  Azzam, “Arrangement of four photodetectors for measuring the state of polarization of light,” Opt. Lett. 10(7), 309–311 (1985). [CrossRef] [PubMed]
  22. C. A. Farlow, D. B. Chenault, J. L. Pezzaniti, K. D. Spradley, and M. G. Gulley, “Imaging polarimeter development and applications,” in Proc. SPIE, 2002), 118–125.
  23. J. D. Barter, P. H. Lee, H. Thompson, Jr., and T. Schneider, “Stokes parameter imaging of scattering surfaces,” in Optical Science, Engineering and Instrumentation'97, (International Society for Optics and Photonics, 1997), 314–320.
  24. M. W.  Kudenov, J. L.  Pezzaniti, G. R.  Gerhart, “Microbolometer-infrared imaging Stokes polarimeter,” Opt. Eng. 48, 063201 (2009).
  25. C. K.  Harnett, H. G.  Craighead, “Liquid-crystal micropolarizer array for polarization-difference imaging,” Appl. Opt. 41(7), 1291–1296 (2002). [CrossRef] [PubMed]
  26. G. P. Nordin, J. T. Meier, P. C. Deguzman, and M. W. Jones, “Diffractive optical element for Stokes vector measurement with a focal plane array,” in SPIE's International Symposium on Optical Science, Engineering, and Instrumentation, (International Society for Optics and Photonics, 1999), 169–177. [CrossRef]
  27. M.  Sarkar, D.  San Segundo Bello, C.  Van Hoof, A.  Theuwissen, “Integrated polarization analyzing CMOS image sensor for material classification,” IEEE Sens. J. 11(8), 1692–1703 (2011). [CrossRef]
  28. J. S.  Tyo, “Hybrid division of aperture/division of a focal-plane polarimeter for real-time polarization imagery without an instantaneous field-of-view error,” Opt. Lett. 31(20), 2984–2986 (2006). [CrossRef] [PubMed]
  29. M.  Momeni, A. H.  Titus, “An analog VLSI chip emulating polarization vision of octopus retina,” IEEE Trans. Neural Netw. 17(1), 222–232 (2006). [CrossRef] [PubMed]
  30. T.  Tokuda, S.  Sato, H.  Yamada, K.  Sasagawa, J.  Ohta, “Polarisation-analysing CMOS photosensor with monolithically embedded wire grid polariser,” Electron. Lett. 45(4), 228–230 (2009). [CrossRef]
  31. V.  Gruev, J.  Van der Spiegel, N.  Engheta, “Dual-tier thin film polymer polarization imaging sensor,” Opt. Express 18(18), 19292–19303 (2010). [CrossRef] [PubMed]
  32. V.  Gruev, R.  Perkins, T.  York, “CCD polarization imaging sensor with aluminum nanowire optical filters,” Opt. Express 18(18), 19087–19094 (2010). [CrossRef] [PubMed]
  33. R.  Perkins, V.  Gruev, “Signal-to-noise analysis of Stokes parameters in division of focal plane polarimeters,” Opt. Express 18(25), 25815–25824 (2010). [CrossRef] [PubMed]
  34. M.  Kulkarni, V.  Gruev, “Integrated spectral-polarization imaging sensor with aluminum nanowire polarization filters,” Opt. Express 20(21), 22997–23012 (2012). [CrossRef] [PubMed]
  35. G.  Myhre, W.-L.  Hsu, A.  Peinado, C.  LaCasse, N.  Brock, R. A.  Chipman, S.  Pau, “Liquid crystal polymer full-stokes division of focal plane polarimeter,” Opt. Express 20(25), 27393–27409 (2012). [CrossRef] [PubMed]
  36. J. S.  Tyo, C. F.  LaCasse, B. M.  Ratliff, “Total elimination of sampling errors in polarization imagery obtained with integrated microgrid polarimeters,” Opt. Lett. 34(20), 3187–3189 (2009). [CrossRef] [PubMed]
  37. S.  Gao, V.  Gruev, “Bilinear and bicubic interpolation methods for division of focal plane polarimeters,” Opt. Express 19(27), 26161–26173 (2011). [CrossRef] [PubMed]
  38. X.  Xu, M.  Kulkarni, A.  Nehorai, V.  Gruev, “A correlation-based interpolation algorithm for division-of-focal-plane polarization sensors,” Proc. SPIE 8364, 83640L–83640L (2012). [CrossRef]
  39. A.  El Gamal, B. A.  Fowler, H.  Min, X.  Liu, “Modeling and estimation of FPN components in CMOS image sensors,” Proc. SPIE 3301, 168–177 (1998). [CrossRef]
  40. V. Gruev, Z. Yang, J. Van der Spiegel, and R. Etienne-Cummings, “Current mode image sensor with two transistors per pixel,” Circuits and Systems I: Regular Papers, IEEE Transactions on 57, 1154–1165 (2010). [CrossRef]
  41. V.  Gruev, “Fabrication of a dual-layer aluminum nanowires polarization filter array,” Opt. Express 19(24), 24361–24369 (2011). [CrossRef] [PubMed]
  42. J. J.  Wang, F.  Walters, X.  Liu, P.  Sciortino, X.  Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90, 061104 (2007).
  43. M. A.  Jensen, G. P.  Nordin, “Finite-aperture wire grid polarizers,” J. Opt. Soc. Am. A 17(12), 2191–2198 (2000). [CrossRef] [PubMed]
  44. T.  York, V.  Gruev, “Characterization of a visible spectrum division-of-focal-plane polarimeter,” Appl. Opt. 51(22), 5392–5400 (2012). [CrossRef] [PubMed]
  45. “KAI-2020 Image Sensor Device Performance Specification,” (Eastman Kodak Company, 2010).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited