OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 18 — Sep. 9, 2013
  • pp: 21087–21096

Hybrid terahertz plasmonic waveguide for sensing applications

Borwen You, Ja-Yu Lu, Tze-An Liu, and Jin-Long Peng  »View Author Affiliations

Optics Express, Vol. 21, Issue 18, pp. 21087-21096 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1245 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The suitability of a terahertz plasmonic sensor for sensing applications is successfully demonstrated using a hybrid planar waveguide composed of a subwavelength plastic ribbon waveguide and a diffraction metal grating. The subwavelength-confined terahertz plasmons on the hybrid waveguide resonantly reflect from the periodic metal structure under phase-matched conditions and perform resonant transmission dips. The resonant plasmonic frequencies are found to be strongly dependent on the refractive indices and thicknesses of analytes laid on the hybrid planar waveguide. Both plastic films with varying thicknesses and granular analytes in different quantities are successfully identified according to the spectral shifts of resonant dips. An optimal refractive index sensitivity of 261 GHz per refractive index unit is achieved. Within localized and enhanced terahertz plasmonic fields, the minimum detectable optical path difference can be reduced to 2.7 μm corresponding to λ/289, and the minimum detectable amount of analytes in powdered form reaches 17.3 nano-mole/mm2. The sensing technique can be used to detect particles in a chemical reaction or monitor pollutants.

© 2013 OSA

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(130.2790) Integrated optics : Guided waves
(240.6690) Optics at surfaces : Surface waves
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:

Original Manuscript: June 27, 2013
Revised Manuscript: August 13, 2013
Manuscript Accepted: August 17, 2013
Published: September 3, 2013

Virtual Issues
Vol. 8, Iss. 10 Virtual Journal for Biomedical Optics

Borwen You, Ja-Yu Lu, Tze-An Liu, and Jin-Long Peng, "Hybrid terahertz plasmonic waveguide for sensing applications," Opt. Express 21, 21087-21096 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Brucherseifer, M. Nagel, P. Haring Bolivar, H. Kurz, A. Bosserhoff, and R. Büttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett.77(24), 4049–4051 (2000). [CrossRef]
  2. T. Hasebe, Y. Yamada, and H. Tabata, “Label-free THz sensing of living body-related molecular binding using a metallic mesh,” Biochem. Biophys. Res. Commun.414(1), 192–198 (2011). [CrossRef] [PubMed]
  3. M. Nagel, M. Forst, and H. Kurz, “THz biosensing devices: fundamentals and technology,” J. Phys. Condens. Matter18(18), S601–S618 (2006). [CrossRef]
  4. B. You, J.-Y. Lu, C.-P. Yu, T.-A. Liu, and J.-L. Peng, “Terahertz refractive index sensors using dielectric pipe waveguides,” Opt. Express20(6), 5858–5866 (2012). [CrossRef] [PubMed]
  5. C. Rau, G. Torosyan, R. Beigang, and Kh. Nerkararyan, “Prism coupled terahertz waveguide sensor,” Appl. Phys. Lett.86(21), 211119 (2005). [CrossRef]
  6. T. H. Isaac, W. L. Barnes, and E. Hendry, “Determining the terahertz optical properties of subwavelength films using semiconductor surface plasmons,” Appl. Phys. Lett.93(24), 241115 (2008). [CrossRef]
  7. H. Kurt and D. S. Citrin, “Coupled-resonator optical waveguides for biochemical sensing of nanoliter volumes of analyte in the terahertz region,” Appl. Phys. Lett.87(24), 241119 (2005). [CrossRef]
  8. T. Hasebe, S. Kawabe, H. Matsui, and H. Tabata, “Metallic mesh-based terahertz biosensing of single- and double-stranded DNA,” J. Appl. Phys.112(9), 094702 (2012). [CrossRef]
  9. C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett.91(18), 184102 (2007). [CrossRef]
  10. J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express16(3), 1786–1795 (2008). [CrossRef] [PubMed]
  11. S. S. Harsha, N. Laman, and D. Grischkowsky, “High-Q terahertz Bragg resonances within a metal parallel plate waveguide,” Appl. Phys. Lett.94(9), 091118 (2009). [CrossRef]
  12. A. L. Bingham and D. Grischkowsky, “Terahertz two-dimensional high-Q photonic crystal waveguide cavities,” Opt. Lett.33(4), 348–350 (2008). [CrossRef] [PubMed]
  13. P. A. George, C. Manolatou, F. Rana, A. L. Bingham, and D. R. Grischkowsky, “Integrated waveguide-coupled terahertz microcavity resonators,” Appl. Phys. Lett.91(19), 191122 (2007). [CrossRef]
  14. M. Theuer, R. Beigang, and D. Grischkowsky, “Highly sensitive terahertz measurement of layer thickness using a two cylinder waveguide sensor,” Appl. Phys. Lett.97(7), 071106 (2010). [CrossRef]
  15. D. Gacemi, J. Mangeney, R. Colombelli, and A. Degiron, “Subwavelength metallic waveguides as a tool for extreme confinement of THz surface waves,” Sci. Rep.3, 1369 (2013). [PubMed]
  16. S. E. Swiontek, D. P. Pulsifer, and A. Lakhtakia, “Optical sensing of analytes in aqueous solutions with a multiple surface-plasmon-polariton-wave platform,” Sci. Rep.3, 1409 (2013). [CrossRef] [PubMed]
  17. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensor Actuators B54, 3–15 (1999).
  18. C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics2(3), 175–179 (2008). [CrossRef]
  19. W. Zhu, A. Agrawal, and A. Nahata, “Planar plasmonic terahertz guided-wave devices,” Opt. Express16(9), 6216–6226 (2008). [CrossRef] [PubMed]
  20. C. R. Williams, M. Misra, S. R. Andrews, S. A. Maier, S. Carretero-Palacios, S. G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, “Dual band terahertz waveguiding on a planar metal surface patterned with annular holes,” Appl. Phys. Lett.96(1), 011101 (2010). [CrossRef]
  21. A. I. Fernández-Domínguez, E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz wedge plasmon polaritons,” Opt. Lett.34(13), 2063–2065 (2009). [CrossRef] [PubMed]
  22. F. Miyamaru, S. Hayashi, C. Otani, K. Kawase, Y. Ogawa, H. Yoshida, and E. Kato, “Terahertz surface-wave resonant sensor with a metal hole array,” Opt. Lett.31(8), 1118–1120 (2006). [CrossRef] [PubMed]
  23. F. Miyamaru and M. Hangyo, “Slab-thickness dependence of polarization change of terahertz waves transmitted through metal hole arrays,” J. Appl. Phys.99(1), 016105 (2006). [CrossRef]
  24. J. Han, A. K. Azad, M. Gong, X. Lu, and W. Zhang, “Coupling between surface plasmons and nonresonant transmission in subwavelength holes at terahertz frequencies,” Appl. Phys. Lett.91(7), 071122 (2007). [CrossRef]
  25. M. X. Qiu, S. C. Ruan, H. Su, C. D. Wang, M. Zhang, R. L. Wang, and H. W. Liang, “Enhanced transmission of THz radiation through sub-wavelength, asymmetry metallic hole arrays,” Appl. Phys. Lett.99(15), 151501 (2011). [CrossRef]
  26. F. Miyamaru, Y. Sasagawa, and M. W. Takeda, “Effect of dielectric thin films on reflection properties of metal hole arrays,” Appl. Phys. Lett.96(2), 021106 (2010). [CrossRef]
  27. L. Shen, X. Chen, Y. Zhong, and K. Agarwal, “Effect of absorption on terahertz surface plasmon polaritons propagating along periodically corrugated metal wires,” Phys. Rev. B77(7), 075408 (2008). [CrossRef]
  28. L. Shen, X. Chen, and T.-J. Yang, “Terahertz surface plasmon polaritons on periodically corrugated metal surfaces,” Opt. Express16(5), 3326–3333 (2008). [CrossRef] [PubMed]
  29. R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett.95(17), 171113 (2009). [CrossRef]
  30. B. You, J.-Y. Lu, J.-H. Liou, C.-P. Yu, H.-Z. Chen, T.-A. Liu, and J.-L. Peng, “Subwavelength film sensing based on terahertz anti-resonant reflecting hollow waveguides,” Opt. Express18(18), 19353–19360 (2010). [CrossRef] [PubMed]
  31. R. Kashyap and G. Nemova, “Surface plasmon resonance-based fiber and planar waveguide sensors,” J. Sens.2009, 645162 (2009). [CrossRef]
  32. G. Nemova and R. Kashyap, “Fiber-Bragg-grating-assisted surface plasmon-polariton sensor,” Opt. Lett.31(14), 2118–2120 (2006). [CrossRef] [PubMed]
  33. B. You, J.-Y. Lu, W.-L. Chang, C.-P. Yu, T.-A. Liu, and J.-L. Peng, “Subwavelength confined terahertz waves on planar waveguides using metallic gratings,” Opt. Express21(5), 6009–6019 (2013). [CrossRef] [PubMed]
  34. H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett.91(25), 253901 (2007). [CrossRef]
  35. B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, and C.-L. Pan, “Subwavelength plastic wire terahertz time-domain spectroscopy,” Appl. Phys. Lett.96(5), 051105 (2010). [CrossRef]
  36. J. W. Lamb, “Miscellancous data on materials for millimetre and submillimetre optics,” Int. J. Infrared Millim. Waves17(12), 1997–2034 (1996). [CrossRef]
  37. G. Liu, M. He, Z. Tian, J. Li, and J. Liu, “Terahertz surface plasmon sensor for distinguishing gasolines,” Appl. Opt.52(23), 5695–5700 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited