OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 18 — Sep. 9, 2013
  • pp: 21097–21104

Design and demonstration of a colorless WDM-OFDMA PON system architecture achieving symmetric 20-Gb/s transmissions with residual interference compensation

Hsing-Yu Chen, Maria Yuang, Po-Lung Tien, Dar-Zu Hsu, Chia-Chien Wei, Yu-Shen Tsai, and Jyehong Chen  »View Author Affiliations


Optics Express, Vol. 21, Issue 18, pp. 21097-21104 (2013)
http://dx.doi.org/10.1364/OE.21.021097


View Full Text Article

Acrobat PDF (1425 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, we propose a two-tiered colorless WDM-OFDMA PON system architecture that draws strengths from each individual WDM and OFDM PON systems. Specifically, the two-tiered architecture enables a colorless transceiver to be shared by a group of ONUs, resulting in drastic reduction of the system cost. For achieving colorlessness via reusing downstream light sources, we discover the residual power of downstream signal unexpectedly springs back after transmissions, causing severe interference to the upstream signal, and thus limiting the data rate of the upstream signal. We devise a method of adopting a common dispersion compensation module at OLT to reduce the residual power over all wavelengths. Experimental results show that, with an improvement of upstream signal’s SNR up to 10dB, the system successfully achieves 20-Gb/s bidirectional OFDM-signal transmissions on the same wavelength over a 20-km SMF.

© 2013 OSA

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.4080) Fiber optics and optical communications : Modulation

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: July 1, 2013
Revised Manuscript: August 2, 2013
Manuscript Accepted: August 11, 2013
Published: September 3, 2013

Citation
Hsing-Yu Chen, Maria Yuang, Po-Lung Tien, Dar-Zu Hsu, Chia-Chien Wei, Yu-Shen Tsai, and Jyehong Chen, "Design and demonstration of a colorless WDM-OFDMA PON system architecture achieving symmetric 20-Gb/s transmissions with residual interference compensation," Opt. Express 21, 21097-21104 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-18-21097


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. Y.-M. Lin and P.-L. Tien, “Next-generation OFDMA-based passive optical network architecture supporting radio-over-fiber,” IEEE J. Sel. Areas Comm.28(6), 791–799 (2010). [CrossRef]
  2. D. Qian, N. Cvijetic, J. Hu, and T. Wang, “A novel OFDMA-PON architecture with source-free ONUs for next-generation optical access networks,” IEEE Photon. Technol. Lett.21(17), 1265–1267 (2009). [CrossRef]
  3. C. Hsing-Yu, W. Chia-Chien, H. Dar-Zu, M. C. Yuang, C. Jyehong, L. Yu-Min, T. Po-Lung, S. S. W. Lee, L. Shih-Hsuan, L. Wei-Yuan, H. Chih-Hung, and S. Ju-Lin, “A 40-Gb/s OFDM PON System Based on 10-GHz EAM and 10-GHz Direct-Detection PIN,” IEEE Photon. Technol. Lett.24(1), 85–87 (2012). [CrossRef]
  4. J. H. Lee, K.-M. Choi, J.-H. Moon, and C.-H. Lee, “Seamless upgrades from a TDM-PON with a video overlay to a WDM-PON,” J. Lightwave Technol.27(15), 3116–3123 (2009). [CrossRef]
  5. S.-G. Mun, H.-S. Cho, and C.-H. Lee, “A Cost-Effective WDM-PON Using a Multiple Section Fabry–Pérot Laser Diode,” IEEE Photon. Technol. Lett.23, 3–5 (2011).
  6. M. C. Yuang, P.-L. Tien, D.-Z. Hsu, S.-Y. Chen, C.-C. Wei, J.-L. Shih, and J. Chen, “A high-performance OFDMA PON system architecture and medium access control,” J. Lightwave Technol.30(11), 1685–1693 (2012). [CrossRef]
  7. D.-Z. Hsu, C.-C. Wei, H.-Y. Chen, W.-Y. Li, and J. Chen, “Cost-effective 33-Gbps intensity modulation direct detection multi-band OFDM LR-PON system employing a 10-GHz-based transceiver,” Opt. Express19(18), 17546–17556 (2011). [CrossRef] [PubMed]
  8. B. Liu, X. Xin, L. Zhang, J. Yu, Q. Zhang, and C. Yu, “A WDM-OFDM-PON architecture with centralized lightwave and PolSK-modulated multicast overlay,” Opt. Express18(3), 2137–2143 (2010). [CrossRef] [PubMed]
  9. J. L. Wei, E. Hugues-Salas, R. P. Giddings, X. Q. Jin, X. Zheng, S. Mansoor, and J. M. Tang, “Wavelength reused bidirectional transmission of adaptively modulated optical OFDM signals in WDM-PONs incorporating SOA and RSOA intensity modulators,” Opt. Express18(10), 9791–9808 (2010). [CrossRef] [PubMed]
  10. J. Yu, M.-F. Huang, D. Qian, L. Chen, and G.-K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett.20(18), 1545–1547 (2008). [CrossRef]
  11. L. Gong-Ru, L. Yi-Hung, L. Chun-Ju, C. Yu-Chieh, and L. Gong-Cheng, “Reusing a Data-Erased ASE Carrier in a Weak-Resonant-Cavity Laser Diode for Noise-Suppressed Error-Free Transmission,” IEEE J. Quantum Electron.47(5), 676–685 (2011). [CrossRef]
  12. K. Hoon, K. Sangho, H. Seongtaek, and O. Yunje, “Impact of dispersion, PMD, and PDL on the performance of spectrum-sliced incoherent light sources using gain-saturated semiconductor optical amplifiers,” J. Lightwave Technol.24(2), 775–785 (2006). [CrossRef]
  13. A. D. McCoy, P. Horak, B. C. Thomsen, M. Ibsen, and D. J. Richardson, “Noise suppression of incoherent light using a gain-saturated SOA: implications for spectrum-sliced WDM systems,” J. Lightwave Technol.23(8), 2399–2409 (2005). [CrossRef]
  14. S. H. Cho, S. S. Lee, and D. W. Shin, “Transmission performance enhancement for EIN limited 2.5 Gbit/s RSOA-based WDM-PON by using dispersion management,” Electron. Lett.46(9), 636–638 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited