OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 18 — Sep. 9, 2013
  • pp: 21113–21118

Tuneable Gaussian to flat-top resonator by amplitude beam shaping

Sandile Ngcobo, Kamel Ait-Ameur, Igor Litvin, Abdelkrim Hasnaoui, and Andrew Forbes  »View Author Affiliations


Optics Express, Vol. 21, Issue 18, pp. 21113-21118 (2013)
http://dx.doi.org/10.1364/OE.21.021113


View Full Text Article

Enhanced HTML    Acrobat PDF (1179 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We outline a simple laser cavity comprising an opaque ring and a circular aperture that is capable of producing spatially tuneable laser modes, from a Gaussian beam to a Flat-top beam. The tuneability is achieved by varying the diameter of the aperture and thus requires no realignment of the cavity. We demonstrate this principle using a digital laser with an intra-cavity spatial light modulator, and confirm the predicted properties of the resonator experimentally.

© 2013 OSA

OCIS Codes
(140.3300) Lasers and laser optics : Laser beam shaping
(140.3410) Lasers and laser optics : Laser resonators
(070.3185) Fourier optics and signal processing : Invariant optical fields
(070.6120) Fourier optics and signal processing : Spatial light modulators

ToC Category:
Fourier Optics and Signal Processing

History
Original Manuscript: July 10, 2013
Revised Manuscript: August 19, 2013
Manuscript Accepted: August 23, 2013
Published: September 3, 2013

Citation
Sandile Ngcobo, Kamel Ait-Ameur, Igor Litvin, Abdelkrim Hasnaoui, and Andrew Forbes, "Tuneable Gaussian to flat-top resonator by amplitude beam shaping," Opt. Express 21, 21113-21118 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-18-21113


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. M. Dickey, S. C. Holswade, and D. L. Shealy, Laser Beam Shaping Applications (Taylor and Francis, 2006).
  2. F. M. Dickey and S. C. Holswade, Laser Beam Shaping, Theory and Techniques (Marcel Dekker, 2000).
  3. J. A. Hoffnagle and C. M. Jefferson, “Design and performance of a refractive optical system that converts a Gaussian to a flattop beam,” Appl. Opt.39(30), 5488–5499 (2000). [CrossRef] [PubMed]
  4. A. Laskin and V. Laskin, “Imaging techniques with refractive beam shaping optics,” Proc. SPIE8490, 84900J, 84900J-11 (2012), doi:. [CrossRef]
  5. I. A. Litvin and A. Forbes, “Intra-cavity flat-top beam generation,” Opt. Express17(18), 15891–15903 (2009). [CrossRef] [PubMed]
  6. P. A. Bélanger and C. Paré, “Optical resonators using graded-phase mirrors,” Opt. Lett.16(14), 1057–1059 (1991). [CrossRef] [PubMed]
  7. P. A. Bélanger, R. L. Lachance, and C. Paré, “Super-Gaussian output from a CO2 laser by using a graded-phase mirror resonator,” Opt. Lett.17(10), 739–741 (1992). [CrossRef] [PubMed]
  8. J. R. Leger, D. Chen, and Z. Wang, “Diffractive optical element for mode shaping of a Nd:YAG laser,” Opt. Lett.19(2), 108–110 (1994). [CrossRef] [PubMed]
  9. I. A. Litvin and A. Forbes, “Gaussian mode selection with intracavity diffractive optics,” Opt. Lett.34(19), 2991–2993 (2009). [CrossRef] [PubMed]
  10. J. R. Leger, D. Chen, and K. Dai, “High modal discrimination in a Nd:YAG laser resonator with internal phase gratings,” Opt. Lett.19(23), 1976–1978 (1994). [CrossRef] [PubMed]
  11. J. C. Dainty, A. V. Koryabin, and A. V. Kudryashov, “Low-order adaptive deformable mirror,” Appl. Opt.37(21), 4663–4668 (1998). [CrossRef] [PubMed]
  12. T. Y. Cherezova, L. N. Kaptsov, and A. V. Kudryashov, “Cw industrial rod YAG:Nd3+ laser with an intracavity active bimorph mirror,” Appl. Opt.35(15), 2554–2561 (1996). [CrossRef] [PubMed]
  13. T. Y. Cherezova, S. S. Chesnokov, L. N. Kaptsov, V. V. Samarkin, and A. V. Kudryashov, “Active laser resonator performance: formation of a specified intensity output,” Appl. Opt.40(33), 6026–6033 (2001). [CrossRef] [PubMed]
  14. M. Gerber and T. Graf, “Generation of super-Gaussian modes in Nd:YAG lasers with a graded-phase mirror,” IEEE J. Quantum Electron.40(6), 741–746 (2004). [CrossRef]
  15. A. J. Caley, M. J. Thomson, J. Liu, A. J. Waddie, and M. R. Taghizadeh, “Diffractive optical elements for high gain lasers with arbitrary output beam profiles,” Opt. Express15(17), 10699–10704 (2007). [CrossRef] [PubMed]
  16. S. Ngcobo, I. A. Litvin, L. Burger, and A. Forbes, “A digital laser for on-demand laser modes,” Nat. Commun.4, 2289 (2013), doi:. [CrossRef] [PubMed]
  17. A. Hasnaoui and K. Ait-Ameur, “Properties of a laser cavity containing an absorbing ring,” Appl. Opt.49(21), 4034–4043 (2010). [CrossRef] [PubMed]
  18. A. Hasnaoui, T. Godin, E. Cagniot, M. Fromager, A. Forbes, and K. Ait-Ameur, “Selection of a LGp0-shaped fundamental mode in a laser cavity: phase versus amplitude masks,” Opt. Commun.285(24), 5268–5275 (2012). [CrossRef]
  19. V. Arrizón, “Optimum on-axis computer-generated hologram encoded into low-resolution phase-modulation devices,” Opt. Lett.28(24), 2521–2523 (2003). [CrossRef] [PubMed]
  20. V. Arrizón, U. Ruiz, R. Carrada, and L. A. González, “Pixelated phase computer holograms for the accurate encoding of scalar complex fields,” J. Opt. Soc. Am. A24(11), 3500–3507 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited