OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 18 — Sep. 9, 2013
  • pp: 21176–21187

Spectral relationships for atmospheric correction. II. Improving NASA's standard and MUMM near infra-red modeling schemes

C. Goyens, C. Jamet, and K. G. Ruddick  »View Author Affiliations


Optics Express, Vol. 21, Issue 18, pp. 21176-21187 (2013)
http://dx.doi.org/10.1364/OE.21.021176


View Full Text Article

Enhanced HTML    Acrobat PDF (852 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Spectral relationships, reflecting the spectral dependence of water-leaving reflectance, ρw(λ), can be easily implemented in current AC algorithms with the aim to improve ρw(λ) retrievals where the algorithms fail. The present study evaluates the potential of spectral relationships to improve the MUMM [Ruddick et al., 2006, Limnol. Oceanogr. 51, 1167–1179] and standard NASA [Bailey et al., 2010, Opt. Express 18, 7521–7527] near infra-red (NIR) modeling schemes included in the AC algorithm to account for non-zero ρw(λNIR), based on in situ coastal ρw(λ) and simulated Rayleigh corrected reflectance data. Two modified NIR-modeling schemes are investigated: (1) the standard NASA NIR-modeling scheme is forced with bounding relationships in the red spectral domain and with a NIR polynomial relationship and, (2) the constant NIR ρw(λ) ratio used in the MUMM NIR-modeling scheme is replaced by a NIR polynomial spectral relationship. Results suggest that the standard NASA NIR-modeling scheme performs better for all turbidity ranges and in particular in the blue spectral domain (percentage bias decreased by approximately 50%) when it is forced with the red and NIR spectral relationships. However, with these new constraints, more reflectance spectra are flagged due to non-physical Chlorophyll-a concentration estimations. The new polynomial-based MUMM NIR-modeling scheme yielded lower ρw(λ) retrieval errors and particularly in extremely turbid waters. However, including the polynomial NIR relationship significantly increased the sensitivity of the algorithm to errors on the selected aerosol model from nearby clear water pixels.

© 2013 OSA

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(010.1285) Atmospheric and oceanic optics : Atmospheric correction
(010.1690) Atmospheric and oceanic optics : Color

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: July 8, 2013
Revised Manuscript: August 12, 2013
Manuscript Accepted: August 13, 2013
Published: September 3, 2013

Virtual Issues
Vol. 8, Iss. 10 Virtual Journal for Biomedical Optics

Citation
C. Goyens, C. Jamet, and K. G. Ruddick, "Spectral relationships for atmospheric correction. II. Improving NASA's standard and MUMM near infra-red modeling schemes," Opt. Express 21, 21176-21187 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-18-21176


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. R. Gordon and M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: A preminilary algorithm,” Appl. Opt.33, 443–452 (1994). [CrossRef] [PubMed]
  2. D. A. Siegel, M. Wang, S. Maritorena, and W. Robinson, “Atmospheric correction of satellite ocean color imagery: The black pixel assumption,” Appl. Opt.39, 3582–3591 (2000). [CrossRef]
  3. R. P. Stumpf, R. A. Arnone, J. R. W. Gould, P. M. Martinolich, and V. Ransibrahmanakul, “A partially coupled ocean-atmosphere model for retrieval of water-leaving radiance from SeaWiFS in coastal waters,” in SeaW-iFS Postlaunch Technical Report Series, Volume 22, NASA Tech. Memo. 2003-206892, S. B. Hooker and E. R. Firestone, eds., (NASA Goddard Space Flight Center, Greenbelt, Maryland), pp. 51–59 (2003).
  4. K. G. Ruddick, V. De Cauwer, Y. Park, and G. Moore, “Seaborne measurements of near infrared water-leaving reflectance: The similarity spectrum for turbid waters,” Limnol. Oceanogr.51, 1167–1179 (2006). [CrossRef]
  5. S. W. Bailey, B. A. Franz, and P. J. Werdell, “Estimations of near-infrared water-leaving reflectance for satellite ocean color data processing,” Opt. Express18, 7521–7527 (2010). [CrossRef] [PubMed]
  6. K. G. Ruddick, F. Ovidio, and M. Rijkeboer, “Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters,” Appl. Opt.39, 897–912 (2000). [CrossRef]
  7. C. Jamet, H. Loisel, C. P. Kuchinke, K. Ruddick, G. Zibordi, and H. Feng, “Comparison of three SeaWiFS atmospheric correction algorithms for turbid waters using AERONET-OC measurements,” Remote Sens. Environ.115(8), 1955–1965 (2011). [CrossRef]
  8. C. Goyens, C. Jamet, and T. Schroeder, “Evaluation of four atmospheric correction algorithms for MODIS-Aqua images over contrasted coastal waters,” Remote Sens. Environ.131, 63–75 (2013). [CrossRef]
  9. T. Schroeder, I. Behnert, M. Schaale, J. Fischer, and R. Doerffer, “Atmospheric correction algorithm for MERIS above case-2 waters,” Int. J. Remote Sens.28(7), 1469–1486 (2007). [CrossRef]
  10. M. Wang, S. Son, and W. Shi, “Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithms using SeaBASS data,” Remote Sens. Environ.113, 635–644 (2009). [CrossRef]
  11. M. Doron, S. Bélanger, D. Doxaran, and M. Babin, “Spectral variations in the near-infrared ocean reflectance,” Remote Sens. Environ.115, 1617–1631 (2011). [CrossRef]
  12. C. Goyens, C. Jamet, and K. Ruddick, “Spectral relationships for atmospheric correction. I. Review and evaluation of red and near infra-red spectral relationships,” Accepted for Publication Opt. Express(2013).
  13. R. C. Smith and W. H. Wilson, “Ship and satellite bio-optical research in the Calofornia Bight,” in Oceanography from Space, J. F. R. Gower, eds., (Plenum Publishing Corporation, New York), pp. 281–294 (1980).
  14. R. W. Austin and T. Petzold, “The determination of the diffuse attenuation coefficient of sea water using the Coastal Zone Color Scanner,” in Oceanography from Space, J. F. R. Gower, eds., (Plenum Publishing Corporation, New York), pp. 239–256 (1980).
  15. A. Bricaud and A. Morel, “Atmospheric corrections and interpretation of marine radiances in CZCS imagery: Use of a reflectance model,” Oceanol. Acta33–50N.SP, (1987).
  16. B. Sturm, V. Barale, D. Larkin, J. H. Andersen, and M. Turner, “OCEAN code: the complete set of algorithms and models for the level 2 processing of European CZCS historical data,” Int. J. Remote Sens.20(7), 1219–1248 (1999). [CrossRef]
  17. J. Ahn, Y. Park, J. Ryu, B. Lee, and I. S. Oh, “Development of Atmospheric Correction Algorithm for Geostationary Ocean Color Imager (GOCI),” Ocean Sci. J.47(3), 247–259 (2012). [CrossRef]
  18. M. Wang, W. Shi, and L. Jiang, “Atmospheric correction using near-infrared bands for satellite ocean color data processing in the turbid western pacific region,” Opt. Express20, 741–753 (2012). [CrossRef] [PubMed]
  19. Z. Lee, B. Lubac, J. Werdell, and R. Arnone, “An update of the Quasi-Analytical Algorithm (QAA v5),” available at: http://www.ioccg.org/groups/Software_OCA/QAA_v5.pdf (2009).
  20. E. P. Shettle and R. W. Fenn, “Models of the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” Rep. AFGL-TR-79-0214, U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass. (1979).
  21. J. E. O’Reilly, S. Maritorena, D. Siegel, M. C. O’Brien, D. Toole, B. G. Mitchell, M. Kahru, F. P. Chavez, P. Strutton, G. E. Cota, S. B. Hooker, C. R. McClain, K. L. Carder, F. Muller-Krager, L. Harding, A. Magnuson, D. Phinney, G. F. Moore, J. Aiken, K. R. Arrigo, R. Letelier, and M. Culver, “Ocean color chlorophyll a algorithms for SeaWiFS, OC2, and OC4: Version 4,” in SeaWiFS Postlaunch Technical Report Series, Volume 11, NASA Tech. Memo. 2000-206892, S. B. Hooker and E. R. Firestone, eds., (NASA Goddard Space Flight Center, Greenbelt, Maryland), pp. 9–23 (2000).
  22. P. J. Werdell and S. W. Bailey, “An improved bio-optical data set for ocean color algorithm development and satellite data product validation,” Remote Sens. Environ.98, 122–140 (2005). [CrossRef]
  23. Z. P. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, “Hyperspectral remote sensing for shallow waters: 1. A semianalytical model,” Appl. Opt.37(27) 6329–6338 (1998). [CrossRef]
  24. Z. Lee, K. L. Carder, and R. A. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt.41(27), 5755–5772 (2002). [CrossRef] [PubMed]
  25. A. Morel and L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr.22, 709–722 (1977). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited