OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 18 — Sep. 9, 2013
  • pp: 21188–21197

Brillouin scattering of visible and hard X-ray photons from optically synthesized phonon wavepackets

A. Bojahr, M. Herzog, S. Mitzscherling, L. Maerten, D. Schick, J. Goldshteyn, W. Leitenberger, R. Shayduk, P. Gaal, and M. Bargheer  »View Author Affiliations

Optics Express, Vol. 21, Issue 18, pp. 21188-21197 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1851 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We monitor how destructive interference of undesired phonon frequency components shapes a quasi-monochromatic hypersound wavepacket spectrum during its local real-time preparation by a nanometric transducer and follow the subsequent decay by nonlinear coupling. We prove each frequency component of an optical supercontinuum probe to be sensitive to one particular phonon wavevector in bulk material and cross-check this by ultrafast x-ray diffraction experiments with direct access to the lattice dynamics. Establishing reliable experimental techniques with direct access to the transient spectrum of the excitation is crucial for the interpretation in strongly nonlinear regimes, such as soliton formation.

© 2013 OSA

OCIS Codes
(290.5900) Scattering : Scattering, stimulated Brillouin
(320.5390) Ultrafast optics : Picosecond phenomena

ToC Category:

Original Manuscript: May 16, 2013
Revised Manuscript: July 13, 2013
Manuscript Accepted: July 16, 2013
Published: September 3, 2013

A. Bojahr, M. Herzog, S. Mitzscherling, L. Maerten, D. Schick, J. Goldshteyn, W. Leitenberger, R. Shayduk, P. Gaal, and M. Bargheer, "Brillouin scattering of visible and hard X-ray photons from optically synthesized phonon wavepackets," Opt. Express 21, 21188-21197 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. J. Eichler, P. Günter, and D. W. Pohl, Laser induced dynamic gratings, vol. 50 of Springer series in optical sciences(Springer, Berlin [u.a.], 1986). [CrossRef]
  2. R. Vacher and L. Boyer, “Brillouin scattering: A tool for the measurement of elastic and photoelastic constants,” Phys. Rev. B6, 639–673 (1972). [CrossRef]
  3. J. A. Rogers, A. A. Maznev, M. J. Banet, and K. A. Nelson, “Optical generation and characterization of acoustic waves in thin films: Fundamentals and applications,” Annual Review of Materials Science30, 117–157 (2000). [CrossRef]
  4. V. Wang and C. R. Giuliano, “Correction of phase aberrations via stimulated brillouin scattering,” Opt. Lett.2, 4–6 (1978). [CrossRef] [PubMed]
  5. R. Y. Chiao, C. H. Townes, and B. P. Stoicheff, “Stimulated brillouin scattering and coherent generation of intense hypersonic waves,” Phys. Rev. Lett.592–595 (1964). [CrossRef]
  6. K. A. Nelson, R. Casalegno, R. J. D. Miller, and M. D. Fayer, “Laser-induced excited state and ultrasonic wave gratings: Amplitude and phase grating contributions to diffraction,” J. Chem. Phys.77, 1144–1152 (1982). [CrossRef]
  7. C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, “Surface generation and detection of phonons by picosecond light pulses,” Phys. Rev. B34, 4129–4138 (1986). [CrossRef]
  8. H. N. Lin, R. J. Stoner, H. J. Maris, and J. Tauc, “Phonon attenuation and velocity measurements in transparent materials by picosecond acoustic interferometry,” J. Appl. Phys.69, 3816–3822 (1991). [CrossRef]
  9. P. J. S. van Capel and J. I. Dijkhuis, “Optical generation and detection of shock waves in sapphire at room temperature,” Appl. Phys. Lett.88, 151910 (2006). [CrossRef]
  10. P. J. S. van Capel, H. P. Porte, G. van der Star, and J. I. Dijkhuis, “Interferometric detection of acoustic shock waves,” J. Phys.: Conf. Ser.92, 012092 (2007). [CrossRef]
  11. O. L. Muskens and J. I. Dijkhuis, “High amplitude, ultrashort, longitudinal strain solitons in sapphire,” Phys. Rev. Lett.89, 285504 (2002). [CrossRef]
  12. P. J. S. van Capel and J. I. Dijkhuis, “Time-resolved interferometric detection of ultrashort strain solitons in sapphire,” Phys. Rev. B81, 144106 (2010). [CrossRef]
  13. A. Bojahr, M. Herzog, D. Schick, I. Vrejoiu, and M. Bargheer, “Calibrated real-time detection of nonlinearly propagating strain waves,” Phys. Rev. B86, 144306 (2012). [CrossRef]
  14. T. Pezeril, C. Klieber, S. Andrieu, and K. A. Nelson, “Optical generation of gigahertz-frequency shear acoustic waves in liquid glycerol,” Phys. Rev. Lett.102, 107402 (2009). [CrossRef] [PubMed]
  15. M. Herzog, A. Bojahr, J. Goldshteyn, W. Leitenberger, I. Vrejoiu, D. Khakhulin, M. Wulff, R. Shayduk, P. Gaal, and M. Bargheer, “Detecting optically synthesized quasi-monochromatic sub-terahertz phonon wavepackets by ultrafast x-ray diffraction,” Appl. Phys. Lett.100, 094101 (2012). [CrossRef]
  16. S. Brivio, D. Polli, A. Crespi, R. Osellame, G. Cerullo, and R. Bertacco, “Observation of anomalous acoustic phonon dispersion in SrTiO3by broadband stimulated brillouin scattering,” Appl. Phys. Lett.98, 211907 (2011). [CrossRef]
  17. E. Pontecorvo, M. Ortolani, D. Polli, M. Ferretti, G. Ruocco, G. Cerullo, and T. Scopigno, “Visualizing coherent phonon propagation in the 100 GHz range: A broadband picosecond acoustics approach,” Appl. Phys. Lett.98, 011901 (2011). [CrossRef]
  18. W. E. Bron, “Spectroscopy of high-frequency phonons,” Reports on Progress in Physics43, 301 (1980). [CrossRef]
  19. Z. Chen, B. C. Minch, and M. F. DeCamp, “High wavevector optical phonons in microstructured bismuth films,” Opt. Express18, 4365–4370 (2010). [CrossRef] [PubMed]
  20. G.-W. Chern, K.-H. Lin, Y.-K. Huang, and C.-K. Sun, “Spectral analysis of high-harmonic coherent acoustic phonons in piezoelectric semiconductor multiple quantum wells,” Phys. Rev. B67, 121303 (2003). [CrossRef]
  21. N. M. Stanton, R. N. Kini, A. J. Kent, M. Henini, and D. Lehmann, “Terahertz phonon optics in gaas/alas superlattice structures,” Phys. Rev. B68, 113302 (2003). [CrossRef]
  22. M. F. Pascual-Winter, A. Fainstein, B. Jusserand, B. Perrin, and A. Lemaître, “Spectral responses of phonon optical generation and detection in superlattices,” Phys. Rev. B85, 235443 (2012). [CrossRef]
  23. T. C. Zhu, H. J. Maris, and J. Tauc, “Attenuation of longitudinal-acoustic phonons in amorphous SiO2at frequencies up to 440 GHz,” Phys. Rev. B44, 4281–4289 (1991). [CrossRef]
  24. C. Klieber, E. Peronne, K. Katayama, J. Choi, M. Yamaguchi, T. Pezeril, and K. A. Nelson, “Narrow-band acoustic attenuation measurements in vitreous silica at frequencies between 20 and 400 GHz,” Appl. Phys. Lett.98, 211908 (2011). [CrossRef]
  25. S. Ayrinhac, M. Foret, A. Devos, B. Rufflé, E. Courtens, and R. Vacher, “Subterahertz hypersound attenuation in silica glass studied via picosecond acoustics,” Phys. Rev. B83, 014204 (2011). [CrossRef]
  26. E. Burkel, “Phonon spectroscopy by inelastic x-ray scattering,” Rep. Prog. Phys.63, 171 (2000). [CrossRef]
  27. P. Eisenberger, N. G. Alexandropoulos, and P. M. Platzman, “X-ray brillouin scattering,” Phys. Rev. Lett.28, 1519–1522 (1972). [CrossRef]
  28. A. M. Lindenberg, I. Kang, S. L. Johnson, T. Missalla, P. A. Heimann, Z. Chang, J. Larsson, P. H. Bucksbaum, H. C. Kapteyn, H. A. Padmore, R. W. Lee, J. S. Wark, and R. W. Falcone, “Time-resolved x-ray diffraction from coherent phonons during a laser-induced phase transition,” Phys. Rev. Lett.84, 111–114 (2000). [CrossRef] [PubMed]
  29. D. A. Reis, M. F. DeCamp, P. H. Bucksbaum, R. Clarke, E. Dufresne, M. Hertlein, R. Merlin, R. Falcone, H. Kapteyn, M. M. Murnane, J. Larsson, T. Missalla, and J. S. Wark, “Probing impulsive strain propagation with x-ray pulses,” Phys. Rev. Lett.86, 3072–3075 (2001). [CrossRef] [PubMed]
  30. K. Sokolowski-Tinten, C. Blome, C. Dietrich, A. Tarasevitch, M. Horn von Hoegen, D. von der Linde, A. Cavalieri, J. Squier, and M. Kammler, “Femtosecond x-ray measurement of ultrafast melting and large acoustic transients,” Phys. Rev. Lett.87, 225701 (2001). [CrossRef] [PubMed]
  31. M. Bargheer, N. Zhavoronkov, Y. Gritsai, J. C. Woo, D. S. Kim, M. Woerner, and T. Elsaesser, “Coherent atomic motions in a nanostructure studied by femtosecond x-ray diffraction,” Science306, 1771–1773 (2004). [CrossRef] [PubMed]
  32. M. Trigo, Y. M. Sheu, D. A. Arms, J. Chen, S. Ghimire, R. S. Goldman, E. Landahl, R. Merlin, E. Peterson, M. Reason, and D. A. Reis, “Probing unfolded acoustic phonons with x rays,” Phys. Rev. Lett.101, 025505 (2008). [CrossRef] [PubMed]
  33. M. Herzog, D. Schick, P. Gaal, R. Shayduk, C. von Korff Schmising, and M. Bargheer, “Analysis of ultrafast x-ray diffraction data in a linear-chain model of the lattice dynamics,” Appl. Phys. A106, 489–499 (2012). [CrossRef]
  34. A. Bojahr, D. Schick, L. Maerten, M. Herzog, I. Vrejoiu, C. von Korff Schmising, C. J. Milne, S. L. Johnson, and M. Bargheer, “Comparing the oscillation phase in optical pump-probe spectra to ultrafast x-ray diffraction in the metal-dielectric SrRuO3/SrTiO3 superlattice,” Phys. Rev. B85, 224302 (2012). [CrossRef]
  35. H. J. Maris, “6 - interaction of sound waves with thermal phonons in dielectric crystals,” in “Principles and Methods,” vol. 8 of Physical Acoustics, W. P. Mason and R. N. Thurston, eds. (Academic Press, 1971), pp. 279–345.
  36. A. Akhieser, “On the absorption of sound in solids,” J. Phys. (USSR)1, 277 (1939).
  37. C. Herring, “Role of low-energy phonons in thermal conduction,” Phys. Rev.95, 954–965 (1954). [CrossRef]
  38. A. Koreeda, T. Nagano, S. Ohno, and S. Saikan, “Quasielastic light scattering in Rutile, ZnSe, Silicon, and SrTiO3,” Phys. Rev. B73, 024303 (2006). [CrossRef]
  39. B. C. Daly, K. Kang, Y. Wang, and D. G. Cahill, “Picosecond ultrasonic measurements of attenuation of longitudinal acoustic phonons in Silicon,” Phys. Rev. B80, 174112 (2009). [CrossRef]
  40. M. Cardona, “Optical properties and band structure of SrTiO3and BaTiO3,” Phys. Rev.140, A651–A655 (1965). [CrossRef]
  41. V. Mahajan and J. Gaskill, “Doppler interpretation of the frequency shifts of light diffracted by sound waves,” J. Appl. Phys.45, 2799 (1976). [CrossRef]
  42. O. L. Muskens and J. I. Dijkhuis, “Inelastic light scattering by trains of ultrashort acoustic solitons in sapphire,” Phys. Rev. B70, 104301 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited