OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 18 — Sep. 9, 2013
  • pp: 21208–21217

Distributed Raman amplification using ultra-long fiber laser with a ring cavity: characteristics and sensing application

Xin-Hong Jia, Yun-Jiang Rao, Zi-Nan Wang, Wei-Li Zhang, Cheng-Xu Yuan, Xiao-Dong Yan, Jin Li, Han Wu, Ye-Yu Zhu, and Fei Peng  »View Author Affiliations


Optics Express, Vol. 21, Issue 18, pp. 21208-21217 (2013)
http://dx.doi.org/10.1364/OE.21.021208


View Full Text Article

Enhanced HTML    Acrobat PDF (1143 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Distributed Raman amplification (DRA) based on ultra-long fiber laser (UL-FL) pumping with a ring cavity is promising for repeaterless transmission and sensing. In this work, the characteristics (including gain, nonlinear impairment and noise figure) for forward and backward pumping of the ring-cavity based DRA scheme are fully investigated. Furthermore, as a typical application of the proposed configuration, ultra-long-distance distributed sensing with Brillouin optical time-domain analysis (BOTDA) over 142.2km fiber with 5m spatial resolution and ± 1.5°C temperature uncertainty is achieved, without any repeater. The key point for the significant performance improvement is the system could offer both of uniform gain distribution and considerably suppressed pump-probe relative intensity noise (RIN) transfer, by optimized design of system structure and parameters.

© 2013 OSA

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(250.4480) Optoelectronics : Optical amplifiers
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: June 17, 2013
Revised Manuscript: August 9, 2013
Manuscript Accepted: August 16, 2013
Published: September 3, 2013

Citation
Xin-Hong Jia, Yun-Jiang Rao, Zi-Nan Wang, Wei-Li Zhang, Cheng-Xu Yuan, Xiao-Dong Yan, Jin Li, Han Wu, Ye-Yu Zhu, and Fei Peng, "Distributed Raman amplification using ultra-long fiber laser with a ring cavity: characteristics and sensing application," Opt. Express 21, 21208-21217 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-18-21208


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Desurvire, J. R. Simpson, and P. C. Becker, “High-gain erbium-doped traveling-wave fiber amplifier,” Opt. Lett.12(11), 888–890 (1987). [CrossRef] [PubMed]
  2. Y. J. Rao, “OFS research over the last 10 years at CQU & UESTC,” Photon. Sens.2(2), 97–117 (2012). [CrossRef]
  3. C. Headly and G. P. Agrawal, Raman Amplifiers in Fiber Optical Communication System (Elsevier, 2005).
  4. V. E. Perlin and H. G. Winful, “On trade-off between noise and nonlinearity in WDM systems with distributed Raman amplification, ”in Proceedings of Optical Fiber Communications Conference, Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), paper WB1.
  5. K. Rottwitt, A. Stentz, T. Nielson, P. Hansen, K. Feder, and K. Walker, “Transparent 80km bi-directionally pumped distributed Raman amplifier with second order pumping,” in Proc. European Conference on Optical Communication (ECOC’99, Institute of Electrical and Electronics Engineers, Nice, France), p.II-144 (1999).
  6. M. D. Mermelstein and C. Headley, “RIN transfer measurement and modeling in dual-order Raman fiber amplifiers,” J. Lightwave Technol.21(6), 1518–1523 (2003). [CrossRef]
  7. J. D. Ania-Castañón, “Quasi-lossless transmission using second-order Raman amplification and fibre Bragg gratings,” Opt. Express12(19), 4372–4377 (2004). [CrossRef] [PubMed]
  8. T. J. Ellingham, J. D. Ania-Castañón, R. Ibbotson, X. Chen, L. Zhang, and S. K. Turitsyn, “Quasi-lossless optical links for broad-band transmission and data processing,” Photon. Tech. Lett.18(1), 268–270 (2006). [CrossRef]
  9. J. D. Ania-Castañón, T. J. Ellingham, R. Ibbotson, X. Chen, L. Zhang, and S. K. Turitsyn, “Ultralong Raman fiber lasers as virtually lossless optical media,” Phys. Rev. Lett.96(2), 023902 (2006). [CrossRef] [PubMed]
  10. M. Alcón-Camas and J. D. Ania-Castañón, “RIN transfer in 2nd-order distributed amplification with ultralong fiber lasers,” Opt. Express18(23), 23569–23575 (2010). [CrossRef] [PubMed]
  11. S. K. Turitsyn, J. D. Ania-Castañón, S. A. Babin, V. Karalekas, P. Harper, D. V. Churkin, S. I. Kablukov, A. E. El-Taher, E. V. Podivilov, and V. K. Mezentsev, “270-km ultralong Raman fiber laser,” Phys. Rev. Lett.103(13), 133901 (2009). [CrossRef] [PubMed]
  12. S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Turbulent broadening of optical spectra in ultralong Raman fiber lasers,” Phys. Rev. A77(3), 033803 (2008). [CrossRef]
  13. S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser,” J. Opt. Soc. Am. B24(8), 1729–1738 (2007). [CrossRef]
  14. V. Karalekas, J. D. Ania-Castañón, P. Harper, S. A. Babin, E. V. Podivilov, and S. K. Turitsyn, “Impact of nonlinear spectral broadening in ultra-long Raman fibre lasers,” Opt. Express15(25), 16690–16695 (2007). [CrossRef] [PubMed]
  15. S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fiber laser,” Nat. Photonics4(4), 231–235 (2010). [CrossRef]
  16. D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castañón, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A82(3), 033828 (2010). [CrossRef]
  17. W. L. Zhang, Y. J. Rao, J. M. Zhu, Z. X. Yang, Z. N. Wang, and X. H. Jia, “Low threshold 2nd-order random lasing of a fiber laser with a half-opened cavity,” Opt. Express20(13), 14400–14405 (2012). [CrossRef] [PubMed]
  18. X. H. Jia, Y. J. Rao, F. Peng, Z. N. Wang, W. L. Zhang, H. J. Wu, and Y. Jiang, “Random-lasing-based distributed fiber-optic amplification,” Opt. Express21(5), 6572–6577 (2013). [CrossRef] [PubMed]
  19. Z. N. Wang, Y. J. Rao, H. Wu, P. Y. Li, Y. Jiang, X. H. Jia, and W. L. Zhang, “Long-distance fiber-optic point-sensing systems based on random fiber lasers,” Opt. Express20(16), 17695–17700 (2012). [CrossRef] [PubMed]
  20. X. H. Jia, Y. J. Rao, Z. N. Wang, W. L. Zhang, Y. Jiang, J. M. Zhu, and Z. X. Yang, “Towards fully distributed amplification and high-performance long-range distributed sensing based on random fiber laser,” OFS 2012, Proc. SPIE8421, 842127, 842127-4 (2012). [CrossRef]
  21. A. M. R. Pinto, O. Frazão, J. L. Santos, and M. Lopez-Amo, “Multiwavelength fiber laser based on a photonic crystal fiber loop mirror with cooperative Rayleigh scattering,” Appl. Phys. B99(3), 391–395 (2010). [CrossRef]
  22. J. Stentz, “Progress on Raman Amplifiers” OFC '97 Technical Digest, 343(1997).
  23. T. N. Nielsen, P. B. Hansen, A. J. Stentz, V. M. Aquaro, J. R. Pedrazzani, A. A. Abramov, and R. P. Espindola, “8×10 Gb/s 1.3-μm unrepeatered transmission over a distance of 141 km with Raman post- and pre-amplifiers,” IEEE Photon. Technol. Lett.10(10), 1492–1494 (1998). [CrossRef]
  24. H. Liang, W. Li, N. Linze, L. Chen, and X. Bao, “High-resolution DPP-BOTDA over 50 km LEAF using return-to-zero coded pulses,” Opt. Lett.35(10), 1503–1505 (2010). [CrossRef] [PubMed]
  25. Y. Dong, L. Chen, and X. Bao, “Time-division multiplexing-based BOTDA over 100 km sensing length,” Opt. Lett.36(2), 277–279 (2011). [CrossRef] [PubMed]
  26. R. Bernini, A. Minardo, and L. Zeni, “Long-range distributed Brillouin fiber sensors by use of an unbalanced double sideband probe,” Opt. Express19(24), 23845–23856 (2011). [CrossRef] [PubMed]
  27. X. H. Jia, Y. J. Rao, Z. N. Wang, W. L. Zhang, Z. L. Ran, K. Deng, and Z. X. Yang, “Theoretical investigations on the non-local effect in a long-distance Brillouin optical time-domain analyzer based on bi-directional Raman amplification,” J. Opt.14(4), 045202 (2012). [CrossRef]
  28. L. Thévenaz, S. F. Mafang, and J. Lin, “Effect of pulse depletion in a Brillouin optical time-domain analysis system,” Opt. Express21(12), 14017–14035 (2013). [CrossRef] [PubMed]
  29. M. A. Soto, G. Bolognini, and F. Di Pasquale, “Optimization of long-range BOTDA sensors with high resolution using first-order bi-directional Raman amplification,” Opt. Express19(5), 4444–4457 (2011). [CrossRef] [PubMed]
  30. S. Martin-Lopez, M. Alcon-Camas, F. Rodriguez, P. Corredera, J. D. Ania-Castañon, L. Thévenaz, and M. Gonzalez-Herraez, “Brillouin optical time-domain analysis assisted by second-order Raman amplification,” Opt. Express18(18), 18769–18778 (2010). [CrossRef] [PubMed]
  31. M. A. Soto, S. Le Floch, and L. Thévenaz, “Bipolar optical pulse coding for performance enhancement in BOTDA sensors,” Opt. Express21(14), 16390–16397 (2013). [CrossRef] [PubMed]
  32. G. P. Agrawal, Nonlilnear Fiber Optics (Academic Press, 2007).
  33. G. P. Agrawal, Fiber-Optic Communication Systems, 4th ed. (Wiley, 2010).
  34. M. Nikles, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol.15(10), 1842–1851 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited