OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 18 — Sep. 9, 2013
  • pp: 21224–21235

Counterdiabatic mode-evolution based coupled-waveguide devices

Shuo-Yen Tseng  »View Author Affiliations

Optics Express, Vol. 21, Issue 18, pp. 21224-21235 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1884 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The goal in designing mode-evolution based devices is to realise short and high-fidelity components. The counterdiabatic protocol in coherent quantum state control can be used to cancel unwanted coupling between adiabatic modes in mode evolution but is not directly realisable in the coupled-waveguide system. By finding alternative coupled-mode equations that links to the same interaction picture dynamical equation as the counterdiabatic protocol via unitary transformations, we have derived a universal formalism for the design of short and high-fidelity mode-evolution based coupled-waveguide devices. Starting from a traditional adiabatic device design, the counterdiabatic protocol leads to a high-fidelity device, with its evolution following the adiabatic modes exactly even when the adiabatic condition is violated. Tolerance analysis shows that the countera-diabatic devices combine the advantages of adiabatic and resonant devices. The formalism is used to design asymmetric waveguide couplers.

© 2013 OSA

OCIS Codes
(000.1600) General : Classical and quantum physics
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices

ToC Category:
Integrated Optics

Original Manuscript: August 12, 2013
Manuscript Accepted: August 19, 2013
Published: September 3, 2013

Shuo-Yen Tseng, "Counterdiabatic mode-evolution based coupled-waveguide devices," Opt. Express 21, 21224-21235 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. R. A. Syms, “The digital directional coupler: improved design,” IEEE Photon. Technol. Lett.4, 1135–1138 (1992). [CrossRef]
  2. X. Sun, H.-C. Liu, and A. Yariv, “Adiabaticity criterion and the shortest adiabatic mode transformer in a coupled-waveguide system,” Opt. Lett.34, 280–282 (2009). [CrossRef] [PubMed]
  3. M. R. Watts, H. A. Haus, and E. P. Ippen, “Integrated mode-evolution-based polarization splitter,” Opt. Lett.30, 967–969 (2005). [CrossRef] [PubMed]
  4. M. V. Berry, “Histories of adiabatic quantum transitions,” Proc. R. Soc. Lond. A429, 61–72 (1990). [CrossRef]
  5. S. Guérin, S. Thomas, and H. R. Jauslin, “Optimization of population transfer by adiabatic passage,” Phys. Rev. A65, 023409 (2002). [CrossRef]
  6. M. G. Bason, M. Viteau, N. Malossi, P. Huillery, E. Arimondo, D. Ciampini, R. Fazio, V. Giovannetti, R. Mannella, and O. Morsch, “High-fidelity quantum driving,” Nature Phys.8, 147–152 (2012). [CrossRef]
  7. B. T. Torosov, S. Guérin, and N. V. Vitanov, “High-fidelity adiabatic passage by composite sequence of chirped pulses,” Phys. Rev. Lett.106, 233001 (2011). [CrossRef]
  8. R. G. Unanyan, L. P. Yatsenko, K. Bergmann, and B. W. Shore, “Laser-induced adiabatic atomic reorientation with control of diabatic losses,” Opt. Commun.139, 48–54 (1997). [CrossRef]
  9. M. Demirplak and S. A. Rice, “Adiabatic population transfer with control fields,” J. Phys. Chem. A107, 9937–9945 (2003). [CrossRef]
  10. M. Demirplak and S. A. Rice, “Assisted adiabatic passage revisited,” J. Phys. Chem. B109, 6838–6844 (2005). [CrossRef]
  11. M. V. Berry, “Transitionless quantum driving,” J. Phys. A: Math. Theor.42, 365303 (2009). [CrossRef]
  12. X. Chen, I. Lizuain, A. Ruschhaupt, D. Guéry-Odelin, and J. G. Muga, “Shortcut to adiabatic passage in two- and three-level atoms,” Phys. Rev. Lett.105, 123003 (2010). [CrossRef] [PubMed]
  13. T.-Y. Lin, F.-C. Hsiao, Y.-W. Jhang, C. Hu, and S.-Y. Tseng, “Mode conversion using optical analogy of shortcut to adiabatic passage in engineered multimode waveguides,” Opt. Express20, 24085–24092 (2012). [CrossRef] [PubMed]
  14. S. Longhi, “Quantum-optical analogies using photonic structures,” Laser and Photon. Rev.3, 243–261 (2009). [CrossRef]
  15. S. K. Korotky, “Three-space representation of phase-mismatch switching in coupled two-state optical systems,” IEEE J. Quantum Electron.22, 952–958 (1986). [CrossRef]
  16. S. Ibáñez, X. Chen, E. Torrontegui, J. G. Muga, and A. Ruschhaupt, “Multiple Schrödinger pictures and dynamics in shortcuts to adiabaticity,” Phys. Rev. Lett.109, 100403 (2012). [CrossRef]
  17. A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron.9, 919–933 (1973). [CrossRef]
  18. K. Okamoto, Fundamentals of Optical Waveguides(Academic, 2006).
  19. K. Kawano and T. Kitoh, Introduction to Optical Waveguide Analysis: Solving Maxwell’s Equations (Wiley, 2001). [CrossRef]
  20. Y. Bai, Q. Liu, K. P. Lor, and K. S. Chiang, “Widely tunable long-period waveguide grating couplers,” Opt. Express14, 12644–12654 (2006). [CrossRef] [PubMed]
  21. A. Syahriar, V. M. Schneider, and S. Al-Bader, “The design of mode evolution couplers,” J. Lightwave Technol.16, 1907–1914 (1998). [CrossRef]
  22. S.-Y. Tseng and M.-C. Wu, “Mode conversion/splitting by optical analogy of multistate stimulated Raman adiabatic passage in multimode waveguides,” J. Lightwave Technol.28, 3529–3534 (2010).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited