OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 18 — Sep. 9, 2013
  • pp: 21236–21241

Modeling of spectral and statistical properties of a random distributed feedback fiber laser

Sergey V. Smirnov and Dmitry V. Churkin  »View Author Affiliations


Optics Express, Vol. 21, Issue 18, pp. 21236-21241 (2013)
http://dx.doi.org/10.1364/OE.21.021236


View Full Text Article

Enhanced HTML    Acrobat PDF (1479 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

For the first time we report full numerical NLSE-based modeling of generation properties of random distributed feedback fiber laser based on Rayleigh scattering. The model which takes into account the random backscattering via its average strength only describes well power and spectral properties of random DFB fiber lasers. The influence of dispersion and nonlinearity on spectral and statistical properties is investigated. The evidence of non-gaussian intensity statistics is found.

© 2013 OSA

OCIS Codes
(140.3490) Lasers and laser optics : Lasers, distributed-feedback
(140.3510) Lasers and laser optics : Lasers, fiber
(290.5870) Scattering : Scattering, Rayleigh

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: May 22, 2013
Revised Manuscript: July 12, 2013
Manuscript Accepted: July 14, 2013
Published: September 3, 2013

Citation
Sergey V. Smirnov and Dmitry V. Churkin, "Modeling of spectral and statistical properties of a random distributed feedback fiber laser," Opt. Express 21, 21236-21241 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-18-21236


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics4(4), 231–235 (2010). [CrossRef]
  2. D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castañón, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A82(3), 033828 (2010). [CrossRef]
  3. I. D. Vatnik, D. V. Churkin, S. A. Babin, and S. K. Turitsyn, “Cascaded random distributed feedback Raman fiber laser operating at 1.2 μm,” Opt. Express19(19), 18486–18494 (2011). [CrossRef] [PubMed]
  4. A. M. R. Pinto, O. Frazão, J. L. Santos, and M. Lopez-Amo, “Multiwavelength fiber laser based on a photonic crystal fiber loop mirror with cooperative Rayleigh scattering,” Appl. Phys. B99(3), 391–395 (2010). [CrossRef]
  5. A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castanon, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett.36(2), 130–132 (2011). [CrossRef] [PubMed]
  6. S. A. Babin, A. E. El-Taher, P. Harper, E. V. Podivilov, and S. K. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A84(2), 021805 (2011). [CrossRef]
  7. M. Pang, S. Xie, X. Bao, D. P. Zhou, Y. Lu, and L. Chen, “Rayleigh scattering-assisted narrow linewidth Brillouin lasing in cascaded fiber,” Opt. Lett.37(15), 3129–3131 (2012). [CrossRef] [PubMed]
  8. Y. J. Rao, W. L. Zhang, J. M. Zhu, Z. X. Yang, Z. N. Wang, and X. H. Jia, “Hybrid lasing in an ultra-long ring fiber laser,” Opt. Express20(20), 22563–22568 (2012). [CrossRef] [PubMed]
  9. D. V. Churkin, A. E. El-Taher, I. D. Vatnik, J. D. Ania-Castañón, P. Harper, E. V. Podivilov, S. A. Babin, and S. K. Turitsyn, “Experimental and theoretical study of longitudinal power distribution in a random DFB fiber laser,” Opt. Express20(10), 11178–11188 (2012). [CrossRef] [PubMed]
  10. A. M. R. Pinto, M. Lopez-Amo, J. Kobelke, and K. Schuster, “Temperature fiber laser sensor based on a hybrid cavity and a random mirror,” J. Lightwave Technol.30(8), 1168–1172 (2012). [CrossRef]
  11. J. Nuño, M. Alcon-Camas, and J. D. Ania-Castañón, “RIN transfer in random distributed feedback fiber lasers,” Opt. Express20(24), 27376–27381 (2012). [CrossRef] [PubMed]
  12. A. M. R. Pinto, O. Frazão, J. L. Santos, M. Lopez-Amo, J. Kobelke, and K. Schuster, “Interrogation of a suspended-core Fabry-Perot temperature sensor through a dual wavelength Raman fiber laser,” J. Lightwave Technol.28, 3149–3155 (2010).
  13. H. F. Martins, M. B. Marques, and O. Frazão, “Temperature-insensitive strain sensor based on four-wave mixing using Raman fiber Bragg grating laser sensor with cooperative Rayleigh scattering,” Appl. Phys. B104(4), 957–960 (2011). [CrossRef]
  14. D. Wiersma, “Disordered photonics,” Nat. Photonics7(3), 188–196 (2013). [CrossRef]
  15. I. D. Vatnik, D. V. Churkin, and S. A. Babin, “Power optimization of random distributed feedback fiber lasers,” Opt. Express20(27), 28033–28038 (2012). [CrossRef] [PubMed]
  16. H. Cao, J. Y. Xu, D. Z. Zhang, S.-H. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. H. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett.84(24), 5584–5587 (2000). [CrossRef] [PubMed]
  17. S. Mujumdar, M. Ricci, R. Torre, and D. S. Wiersma, “Amplified extended modes in random lasers,” Phys. Rev. Lett.93(5), 053903 (2004). [CrossRef] [PubMed]
  18. H. E. Türeci, L. Ge, S. Rotter, and A. D. Stone, “Strong interactions in multimode random lasers,” Science320(5876), 643–646 (2008). [CrossRef] [PubMed]
  19. J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localized random laser modes,” Nat. Photonics3(5), 279–282 (2009). [CrossRef]
  20. P. Stano and P. Jacquod, “Suppression of interactions in multimode random lasers in the Anderson localized regime,” Nat. Photonics7(1), 66–71 (2012). [CrossRef]
  21. Z. Wang, X. Jia, Y. Rao, Y. Jiang, and W. Zhang, “Novel long-distance fiber-optic sensing systems based on random fiber lasers,” Proc. SPIE8351, 835142 (2012). [CrossRef]
  22. C. Vanneste, P. Sebbah, and H. Cao, “Lasing with resonant feedback in weakly scattering random systems,” Phys. Rev. Lett.98(14), 143902 (2007). [CrossRef] [PubMed]
  23. G. A. Berger, M. Kempe, and A. Z. Genack, “Dynamics of stimulated emission from random media,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics56(5), 6118–6122 (1997). [CrossRef]
  24. X. Jiang and C. M. Soukoulis, “Time dependent theory for random lasers,” Phys. Rev. Lett.85(1), 70–73 (2000). [CrossRef] [PubMed]
  25. J. Lü, J. Liu, H. Liu, K. Wang, and S. Wang, “Theoretical investigation on temporal properties of random lasers pumped by femtosecond-lasing pulses,” Opt. Commun.282(11), 2104–2109 (2009). [CrossRef]
  26. J. Andreasen and H. Cao, “Numerical study of amplified spontaneous emission and lasing in random media,” Phys. Rev. A82(6), 063835 (2010). [CrossRef]
  27. X. Wu, J. Andreasen, H. Cao, and A. Yamilov, “Effect of local pumping on random laser modes in one dimension,” J. Opt. Soc. Am. B24(10), A26–A33 (2007). [CrossRef]
  28. Y. Xie and Z. A. Liu, “A new physical model on lasing in active random media,” Phys. Lett. A341(1-4), 339–344 (2005). [CrossRef]
  29. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2001).
  30. C. E. Preda, G. Ravet, A. A. Fotiadi, and P. Mégret, “Iterative method for Brillouin fiber ring resonator,” in CLEO/Europe 2011 Conference, OSA Technical Digest (Optical Society of America, 2011), paper CJ_P27. [CrossRef]
  31. S. K. Turitsyn, A. E. Bednyakova, M. P. Fedoruk, A. I. Latkin, A. A. Fotiadi, A. S. Kurkov, and E. Sholokhov, “Modeling of CW Yb-doped fiber lasers with highly nonlinear cavity dynamics,” Opt. Express19(9), 8394–8405 (2011). [CrossRef] [PubMed]
  32. A. E. Bednyakova, O. A. Gorbunov, M. O. Politko, S. I. Kablukov, S. V. Smirnov, D. V. Churkin, M. P. Fedoruk, and S. A. Babin, “Generation dynamics of the narrowband Yb-doped fiber laser,” Opt. Express21(7), 8177–8182 (2013). [CrossRef] [PubMed]
  33. D. V. Churkin, S. V. Smirnov, and E. V. Podivilov, “Statistical properties of partially coherent cw fiber lasers,” Opt. Lett.35(19), 3288–3290 (2010). [CrossRef] [PubMed]
  34. S. Randoux, N. Dalloz, and P. Suret, “Intracavity changes in the field statistics of Raman fiber lasers,” Opt. Lett.36(6), 790–792 (2011). [CrossRef] [PubMed]
  35. D. V. Churkin, O. A. Gorbunov, and S. V. Smirnov, “Extreme value statistics in Raman fiber lasers,” Opt. Lett.36(18), 3617–3619 (2011). [CrossRef] [PubMed]
  36. D. V. Churkin and S. V. Smirnov, “Numerical modelling of spectral, temporal and statistical properties of Raman fiber lasers,” Opt. Commun.285(8), 2154–2160 (2012). [CrossRef]
  37. R. G. Smith, “Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering,” Appl. Opt.11(11), 2489–2494 (1972). [CrossRef] [PubMed]
  38. A. A. Fotiadi and R. V. Kiyan, “Cooperative stimulated Brillouin and Rayleigh backscattering process in optical fiber,” Opt. Lett.23(23), 1805–1807 (1998). [CrossRef] [PubMed]
  39. J. D. Ania-Castañón, “Quasi-lossless transmission using second-order Raman amplification and fibre Bragg gratings,” Opt. Express12(19), 4372–4377 (2004). [CrossRef] [PubMed]
  40. M. N. Zervas and R. I. Laming, “Rayleigh scattering effect on the gain efficiency and noise of Erbium-doped fiber amplifiers,” IEEE J. Quantum Electron.31(3), 468–471 (1995). [CrossRef]
  41. M. D. Mermelstein, R. Posey, G. A. Johnson, and S. T. Vohra, “Rayleigh scattering optical frequency correlation in a single-mode optical fiber,” Opt. Lett.26(2), 58–60 (2001). [CrossRef] [PubMed]
  42. S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser,” J. Opt. Soc. Am. B24(8), 1729–1738 (2007). [CrossRef]
  43. S. A. Babin, V. Karalekas, P. Harper, E. V. Podivilov, V. K. Mezentsev, J. D. Ania-Castañón, and S. K. Turitsyn, “Experimental demonstration of mode structure in ultralong Raman fiber lasers,” Opt. Lett.32(9), 1135–1137 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited