OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 18 — Sep. 9, 2013
  • pp: 21254–21263

Study of the thermo-optical constants of Yb doped Y2O3, Lu2O3 and Sc2O3 ceramic materials

Ilya L. Snetkov, Dmitry E. Silin, Oleg V. Palashov, Efim A. Khazanov, Hideki Yagi, Takagimi Yanagitani, Hitoki Yoneda, Akira Shirakawa, Ken-ichi Ueda, and Alexander A. Kaminskii  »View Author Affiliations


Optics Express, Vol. 21, Issue 18, pp. 21254-21263 (2013)
http://dx.doi.org/10.1364/OE.21.021254


View Full Text Article

Enhanced HTML    Acrobat PDF (2182 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Thermally induced depolarization and thermal lens of three Konoshima Chemical Co. laser-ceramics samples Yb3+:Lu2O3(CYb≈1.8 at.%), Yb3+:Y2O3(CYb≈1.8 at.%), and Yb3+:Sc2O3 (CYb≈2.5 at.%) were measured in experiment at different pump power. The results allowed us to estimate the thermal conductivity of the investigated ceramic samples and compare their thermo-optical properties. The thermo-optical constants P and Q and its sign measured for these materials at the first time.

© 2013 OSA

OCIS Codes
(120.4530) Instrumentation, measurement, and metrology : Optical constants
(120.6810) Instrumentation, measurement, and metrology : Thermal effects
(140.3380) Lasers and laser optics : Laser materials
(140.6810) Lasers and laser optics : Thermal effects
(160.3380) Materials : Laser materials
(160.4760) Materials : Optical properties

ToC Category:
Materials

History
Original Manuscript: July 1, 2013
Revised Manuscript: August 23, 2013
Manuscript Accepted: August 23, 2013
Published: September 4, 2013

Citation
Ilya L. Snetkov, Dmitry E. Silin, Oleg V. Palashov, Efim A. Khazanov, Hideki Yagi, Takagimi Yanagitani, Hitoki Yoneda, Akira Shirakawa, Ken-ichi Ueda, and Alexander A. Kaminskii, "Study of the thermo-optical constants of Yb doped Y2O3, Lu2O3 and Sc2O3 ceramic materials," Opt. Express 21, 21254-21263 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-18-21254


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Koechner, Solid-State Laser Engineering (Springer, 1999).
  2. P. Klein and W. Croft, “Thermal conductivity, diffusivity, and expansion of Y2O3, Y3Al5O12, and LaF3 in the range 77-300 K,” J. Appl. Phys.38(4), 1603–1607 (1967). [CrossRef]
  3. T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 448–459 (2007). [CrossRef]
  4. T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B97(2), 281–295 (2009). [CrossRef]
  5. R. Peters, C. Krankel, S. T. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. H. Heckl, C. R. E. Baer, C. J. Saraceno, T. Südmeyer, and U. Keller, “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides,” Appl. Phys. B102(3), 509–514 (2011). [CrossRef]
  6. J. Sanghera, W. Kim, G. Villalobos, B. Shaw, C. Baker, J. Frantz, B. Sadowski, and I. Aggarwal, “Ceramic laser materials,” Proc. SPIE7912, 79121K (2011). [CrossRef]
  7. C. R. E. Baer, C. Kränkel, C. J. Saraceno, O. H. Heckl, M. Golling, R. Peters, K. Petermann, T. Südmeyer, G. Huber, and U. Keller, “Femtosecond thin-disk laser with 141 W of average power,” Opt. Lett.35(13), 2302–2304 (2010). [CrossRef] [PubMed]
  8. R. Peters, C. Krankel, K. Petermann, and G. Huber, “Crystal growth by the heat exchanger method, spectroscopic characterization and laser operation of high-purity Yb:Lu2O3,” J. Cryst. Growth310(7-9), 1934–1938 (2008). [CrossRef]
  9. J. Lu, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett.77(23), 3707–3709 (2000). [CrossRef]
  10. J. Lu, J. Song, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. Kudryashov, “High-power Nd:Y3Al5O12 ceramic laser,” Jpn. J. Appl. Phys.39(Part 2, No. 10B), L1048–L1050 (2000). [CrossRef]
  11. J. R. Lu, J. H. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Nd3+:Y2O3 ceramic laser,” Jpn. J. Appl. Phys.40(Part 2, No. 12A), L1277–L1279 (2001). [CrossRef]
  12. J. Lu, J.-F. Bisson, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. Kaminskii, “Yb3+:Sc2O3 ceramic laser,” Appl. Phys. Lett.83(6), 1101–1103 (2003). [CrossRef]
  13. J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. Kaminskii, “Promising ceramic laser material: highly transparent Nd3+:Lu2O3 ceramic,” Appl. Phys. Lett.81(23), 4324–4326 (2002). [CrossRef]
  14. J. D. Foster and L. M. Osterink, “Thermal effects in a Nd:YAG laser,” J. Appl. Phys.41(9), 3656–3663 (1970). [CrossRef]
  15. W. Koechner and D. K. Rice, “Effect of birefringence on the performance of linearly polarized YAG:Nd lasers,” IEEE J. Quantum Electron.6(9), 557–566 (1970). [CrossRef]
  16. M. A. Kagan and E. A. Khazanov, “Compensation for thermally induced birefringence in polycrystalline ceramic active elements,” Quantum Electron.33(10), 876–882 (2003). [CrossRef]
  17. A. G. Vyatkin and E. A. Khazanov, “Thermally induced scattering of radiation in laser ceramics with arbitrary grain size,” J. Opt. Soc. Am. B29(12), 3307–3316 (2012). [CrossRef]
  18. J. F. Nye, Physical Properties of Crystals (Oxford University, 1964).
  19. I. L. Snetkov, A. G. Vyatkin, O. V. Palashov, and E. A. Khazanov, “Drastic reduction of thermally induced depolarization in CaF₂ crystals with [111] orientation,” Opt. Express20(12), 13357–13367 (2012). [CrossRef] [PubMed]
  20. I. L. Snetkov, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Properties of a thermal lens in laser ceramics,” Quantum Electron.37(7), 633–638 (2007). [CrossRef]
  21. A. A. Soloviev, I. L. Snetkov, V. V. Zelenogorsky, I. E. Kozhevatov, O. V. Palashov, and E. A. Khazanov, “Experimental study of thermal lens features in laser ceramics,” Opt. Express16(25), 21012–21021 (2008). [CrossRef] [PubMed]
  22. A. V. Mezenov, L. N. Soms, and A. I. Stepanov, Thermooptics of Solid-State Lasers (Mashinebuilding, 1986).
  23. V. V. Zelenogorsky, A. A. Solovyov, I. E. Kozhevatov, E. E. Kamenetsky, E. A. Rudenchik, O. V. Palashov, D. E. Silin, and E. A. Khazanov, “High-precision methods and devices for in situ measurements of thermally induced aberrations in optical elements,” Appl. Opt.45(17), 4092–4101 (2006). [CrossRef] [PubMed]
  24. D. E. Silin and I. E. Kozhevatov, “A single mode fiber based point diffraction interferometer,” Opt. Spectrosc.113(2), 216–221 (2012). [CrossRef]
  25. V. Cardinali, E. Marmois, B. Le Garrec, and G. Bourdet, “Determination of the thermo-optic coefficient dn/dT of ytterbium doped ceramics (Sc2O3,Y2O3,Lu2O3, YAG), crystals (YAG, CaF2) and neodymium doped phosphate glass at cryogenic temperature,” Opt. Mater.34(6), 990–994 (2012). [CrossRef]
  26. R. Yasuhara, H. Furuse, A. Iwamoto, J. Kawanaka, and T. Yanagitani, “Evaluation of thermo-optic characteristics of cryogenically cooled Yb:YAG ceramics,” Opt. Express20(28), 29531–29539 (2012). [CrossRef] [PubMed]
  27. I. B. Mukhin, O. V. Palashov, E. A. Khazanov, A. G. Vyatkin, and E. A. Perevezentsev, “Laser and thermal characteristics of Yb:YAG crystals in the 80 – 300 K temperature range,” Quantum Electron.41(11), 1045–1050 (2011). [CrossRef]
  28. A. Ikesue, I. Furusato, and K. Kamata, “Fabrication of polycrystalline, transparent YAG ceramics by a solid-state reaction method,” J. Am. Ceram. Soc.78(1), 225–228 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited