OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 18 — Sep. 9, 2013
  • pp: 21273–21284

Reverse design of a bull’s eye structure based on the plasmonic far-field pattern

Akira Yamada and Mitsuhiro Terakawa  »View Author Affiliations

Optics Express, Vol. 21, Issue 18, pp. 21273-21284 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3299 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a novel concept on designing a bull’s eye structure for a single-wavelength optical source. The plasmonic far-field around a subwavelength aperture on a thin gold film is calculated by finite-difference time-domain method. Based on the annular field intensity distribution on the film surface, we present a method for determining a fairly optimal first groove radius and a periodicity of the grooves that show enhanced transmission. By additionally fine-tuning groove width and groove depth, we have achieved a transmission factor of 9.74. Our novel method has high potential in applications such as silicon infrared sensors.

© 2013 OSA

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(050.2770) Diffraction and gratings : Gratings
(240.6680) Optics at surfaces : Surface plasmons
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Diffraction and Gratings

Original Manuscript: May 31, 2013
Revised Manuscript: July 23, 2013
Manuscript Accepted: August 26, 2013
Published: September 4, 2013

Akira Yamada and Mitsuhiro Terakawa, "Reverse design of a bull’s eye structure based on the plasmonic far-field pattern," Opt. Express 21, 21273-21284 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys.120(1), 357–366 (2004). [CrossRef] [PubMed]
  2. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010). [CrossRef]
  3. A. J. Pasquale, B. M. Reinhard, and L. Dal Negro, “Concentric Necklace Nanolenses for Optical Near-Field Focusing and Enhancement,” ACS Nano6(5), 4341–4348 (2012). [CrossRef] [PubMed]
  4. Z. Li, Z. Yang, and H. Xu, “Comment on “self-similar chain of metal nanospheres as an efficient nanolens”,” Phys. Rev. Lett.97(7), 079701, discussion 079702 (2006). [CrossRef] [PubMed]
  5. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of Highly Directional Emission from a Single Subwavelength Aperture Surrounded by Surface Corrugations,” Phys. Rev. Lett.90(16), 167401 (2003). [CrossRef] [PubMed]
  6. F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple Paths to Enhance Optical Transmission through a Single Subwavelength Slit,” Phys. Rev. Lett.90(21), 213901 (2003). [CrossRef] [PubMed]
  7. C. K. Chang, D. Z. Lin, C. S. Yeh, C. K. Lee, Y. C. Chang, M. W. Lin, J. T. Yeh, and J. M. Liu, “Similarities and differences for light-induced surface plasmons in one- and two-dimensional symmetrical metallic nanostructures,” Opt. Lett.31(15), 2341–2343 (2006). [CrossRef] [PubMed]
  8. T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology13(3), 429–432 (2002). [CrossRef]
  9. T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si Nano-Photodiode with a Surface Plasmon Antenna,” Jpn. J. Appl. Phys.44(12), L364–L366 (2005). [CrossRef]
  10. O. Mahboub, S. C. Palacios, C. Genet, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and T. W. Ebbesen, “Optimization of bull’s eye structures for transmission enhancement,” Opt. Express18(11), 11292–11299 (2010). [CrossRef] [PubMed]
  11. K. L. Shuford, M. A. Ratner, S. K. Gray, and G. C. Schatz, “Finite-difference time-domain studies of light transmission through nanohole structures,” Appl. Phys. B84(1-2), 11–18 (2006). [CrossRef]
  12. O. T. A. Janssen, H. P. Urbach, and G. W. ’t Hooft, “Giant optical transmission of a subwavelength slit optimized using the magnetic field phase,” Phys. Rev. Lett.99(4), 043902 (2007). [CrossRef] [PubMed]
  13. S. Carretero-Palacios, O. Mahboub, F. J. Garcia-Vidal, L. Martin-Moreno, S. G. Rodrigo, C. Genet, and T. W. Ebbesen, “Mechanisms for extraordinary optical transmission through bull’s eye structures,” Opt. Express19(11), 10429–10442 (2011). [CrossRef] [PubMed]
  14. T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett.26(24), 1972–1974 (2001). [CrossRef] [PubMed]
  15. N. Bonod, E. Popov, D. Gérard, J. Wenger, and H. Rigneault, “Field enhancement in a circular aperture surrounded by a single channel groove,” Opt. Express16(3), 2276–2287 (2008). [CrossRef] [PubMed]
  16. Y. Cui and S. He, “A theoretical re-examination of giant transmission of light through a metallic nano-slit surrounded with periodic grooves,” Opt. Express17(16), 13995–14000 (2009). [CrossRef] [PubMed]
  17. H. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express12(16), 3629–3651 (2004). [CrossRef] [PubMed]
  18. A. Degiron and T. W. Ebbesen, “Analysis of the transmission process through single apertures surrounded by periodic corrugations,” Opt. Express12(16), 3694–3700 (2004). [CrossRef] [PubMed]
  19. A. Agrawal, H. Cao, and A. Nahata, “Time-domain analysis of enhanced transmission through a single subwavelength aperture,” Opt. Express13(9), 3535–3542 (2005). [CrossRef] [PubMed]
  20. F. J. Garcia-Vidal, L. Martin-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett.83(22), 4500 (2003). [CrossRef]
  21. G. Obara, N. Maeda, T. Miyanishi, M. Terakawa, N. N. Nedyalkov, and M. Obara, “Plasmonic and Mie scattering control of far-field interference for regular ripple formation on various material substrates,” Opt. Express19(20), 19093–19103 (2011). [CrossRef] [PubMed]
  22. G. Obara, Y. Tanaka, N. N. Nedyalkov, M. Terakawa, and M. Obara, “Direct observation of surface plasmon far field for regular surface ripple formation by femtosecond laser pulse irradiation of gold nanostructures on silicon substrates,” Appl. Phys. Lett.99(6), 061106 (2011). [CrossRef]
  23. L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett.85(3), 467 (2004). [CrossRef]
  24. G. Mur, “Absorbing Boundary Conditions for the Finite-Difference Approximation of the Time-Domain Electromagnetic-Field Equations,” IEEE Trans. Electromagn. Compat.EMC-23(4), 377–382 (1981). [CrossRef]
  25. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited