OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 18 — Sep. 9, 2013
  • pp: 21293–21298

Integration of microfluidics with grating coupled silicon photonic sensors by one-step combined photopatterning and molding of OSTE

Carlos Errando-Herranz, Farizah Saharil, Albert Mola Romero, Niklas Sandström, Reza Zandi Shafagh, Wouter van der Wijngaart, Tommy Haraldsson, and Kristinn B. Gylfason  »View Author Affiliations


Optics Express, Vol. 21, Issue 18, pp. 21293-21298 (2013)
http://dx.doi.org/10.1364/OE.21.021293


View Full Text Article

Enhanced HTML    Acrobat PDF (4375 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a novel integration method for packaging silicon photonic sensors with polymer microfluidics, designed to be suitable for wafer-level production methods. The method addresses the previously unmet manufacturing challenges of matching the microfluidic footprint area to that of the photonics, and of robust bonding of microfluidic layers to biofunctionalized surfaces. We demonstrate the fabrication, in a single step, of a microfluidic layer in the recently introduced OSTE polymer, and the subsequent unassisted dry bonding of the microfluidic layer to a grating coupled silicon photonic ring resonator sensor chip. The microfluidic layer features photopatterned through holes (vias) for optical fiber probing and fluid connections, as well as molded microchannels and tube connectors, and is manufactured and subsequently bonded to a silicon sensor chip in less than 10 minutes. Combining this new microfluidic packaging method with photonic waveguide surface gratings for light coupling allows matching the size scale of microfluidics to that of current silicon photonic biosensors. To demonstrate the new method, we performed successful refractive index measurements of liquid ethanol and methanol samples, using the fabricated device. The minimum required sample volume for refractive index measurement is below one nanoliter.

© 2013 OSA

OCIS Codes
(130.6010) Integrated optics : Sensors
(160.5470) Materials : Polymers
(130.6622) Integrated optics : Subsystem integration and techniques

ToC Category:
Integrated Optics

History
Original Manuscript: July 9, 2013
Revised Manuscript: August 21, 2013
Manuscript Accepted: August 23, 2013
Published: September 4, 2013

Virtual Issues
Vol. 8, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Carlos Errando-Herranz, Farizah Saharil, Albert Mola Romero, Niklas Sandström, Reza Zandi Shafagh, Wouter van der Wijngaart, Tommy Haraldsson, and Kristinn B. Gylfason, "Integration of microfluidics with grating coupled silicon photonic sensors by one-step combined photopatterning and molding of OSTE," Opt. Express 21, 21293-21298 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-18-21293


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. S. Sun, J. P. Landry, Y. Y. Fei, X. D. Zhu, J. T. Luo, X. B. Wang, and K. S. Lam, “Effect of fluorescently labeling protein probes on kinetics of protein-ligand reactions.” Langmuir24, 13399–13405 (2008). [CrossRef] [PubMed]
  2. T. Kodadek, “Protein microarrays: prospects and problems,” Chemistry & Biology8, 105–115 (2001). [CrossRef]
  3. G. Zheng, F. Patolsky, Y. Cui, W. U. Wang, and C. M. Lieber, “Multiplexed electrical detection of cancer markers with nanowire sensor arrays,” Nat. Biotechnol.23, 1294–1301 (2005). [CrossRef] [PubMed]
  4. J. M. Rothberg, W. Hinz, T. M. Rearick, J. Schultz, W. Mileski, M. Davey, J. H. Leamon, K. Johnson, M. J. Milgrew, M. Edwards, J. Hoon, J. F. Simons, D. Marran, J. W. Myers, J. F. Davidson, A. Branting, J. R. Nobile, B. P. Puc, D. Light, T. A. Clark, M. Huber, J. T. Branciforte, I. B. Stoner, S. E. Cawley, M. Lyons, Y. Fu, N. Homer, M. Sedova, X. Miao, B. Reed, J. Sabina, E. Feierstein, M. Schorn, M. Alanjary, E. Dimalanta, D. Dressman, R. Kasinskas, T. Sokolsky, J. A. Fidanza, E. Namsaraev, K. J. McKernan, A. Williams, G. T. Roth, and J. Bustillo, “An integrated semiconductor device enabling non-optical genome sequencing,” Nature475, 348–352 (2011). [CrossRef] [PubMed]
  5. K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-insulator microring resonator for sensitive and label-free biosensing,” Opt. Express15, 7610–7615 (2007). [CrossRef] [PubMed]
  6. M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on Silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Quantum Electron.16, 654–661 (2010). [CrossRef]
  7. A. Densmore, D. X. Xu, S. Janz, P. Waldron, T. Mischki, G. Lopinski, A. Delâge, J. Lapointe, P. Cheben, B. Lamontagne, and J. H. Schmid, “Spiral-path high-sensitivity silicon photonic wire molecular sensor with temperature-independent response,” Opt. Lett.33, 596–598 (2008). [CrossRef] [PubMed]
  8. O. Parriaux, V. A. Sychugov, and A. V. Tishchenko, “Coupling gratings as waveguide functional elements,” Pure and Appl. Opt.: J. European Optical Society Part A5, 453+ (1999). [CrossRef]
  9. M. Antelius, K. B. Gylfason, and H. Sohlström, “An apodized SOI waveguide-to-fiber surface grating coupler for single lithography silicon photonics,” Opt. Express19, 3592–3598 (2011). [CrossRef] [PubMed]
  10. M. S. Luchansky and R. C. Bailey, “High-Q optical sensors for chemical and biological analysis,” Anal. Chem.84, 793–821 (2011). [CrossRef] [PubMed]
  11. K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of Silicon-on-insulator microring resonators,” IEEE Photonics J.1, 225–235 (2009). [CrossRef]
  12. C. F. Carlborg, K. B. Gylfason, A. Kazmierczak, F. Dortu, M. J. Banuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlstrom, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab on a Chip10, 281–290 (2010). [CrossRef] [PubMed]
  13. C. F. Carlborg, T. Haraldsson, K. Oberg, M. Malkoch, and W. van der Wijngaart, “Beyond PDMS: off-stoichiometry thiol-ene (OSTE) based soft lithography for rapid prototyping of microfluidic devices,” Lab on a Chip11, 3136–3147 (2011). [CrossRef] [PubMed]
  14. F. Saharil, C. F. Carlborg, T. Haraldsson, and W. van der Wijngaart, “Biocompatible ”click” wafer bonding for microfluidic devices,” Lab on a Chip12, 3032–3035 (2012). [CrossRef]
  15. J. M. Karlsson, F. Carlborg, F. Saharil, F. Forsberg, F. Niklaus, W. van der Wijngaart, and T. Haraldsson, “High-resolution micropatterning of off-stoichiometric thiol-enes (OSTE) via a novel lithography mechanism,” in “16th International Conference on Miniaturized Systems for Chemistry and Life Sciences (MicroTAS),” (2012).
  16. B. Movassagh and M. Soleiman-Beigi, “Synthesis of thiocarbamates from thiols and isocyanates under catalyst-and solvent-free conditions,” Monatshefte für Chemie139, 137–140 (2008). [CrossRef]
  17. C. F. Carlborg, M. Cretich, T. Haraldsson, L. Sola, M. Bagnati, M. Chiari, and W. van der Wijngaart, “Biosticker: patterned microfluidic stickers for rapid integration with microarrays,” in “15th International Conference on Miniaturized Systems for Chemistry and Life Sciences (MicroTAS),” (2011), pp. 311–313.
  18. N. Sandstrom, R. Z. Shafagh, C. F. Carlborg, T. Haraldsson, G. Stemme, and W. van der Wijngaart, “One step integration of gold coated sensors with OSTE polymer cartridges by low temperature dry bonding,” in “16th International Conference on Solid-State Sensors, Actuators and Microsystems,” (IEEE, 2011), pp. 2778–2781. [CrossRef]
  19. C. Errando-Herranz, F. Saharil, A. Mola Romero, N. Sandström, R. Z. Shafagh, W. van der Wijngaart, T. Haraldsson, and K. B. Gylfason, “Integration of polymer microfluidic channels, vias, and connectors with Silicon photonic sensors by one-step combined photopatterning and molding of OSTE,” in “17th International Conference on Solid-State Sensors, Actuators and Microsystems,” (IEEE, 2013), pp. 1613–1616.
  20. E. P. Kartalov and S. R. Quake, “Microfluidic device reads up to four consecutive base pairs in DNA sequencing-by-synthesis,” Nucleic Acids Research32, 2873–2879 (2004). [CrossRef] [PubMed]
  21. C. F. Carlborg, T. Haraldsson, M. Cornaglia, G. Stemme, and W. van der Wijngaart, “A High-Yield Process for 3-D Large-Scale Integrated Microfluidic Networks in PDMS,” J. Microelectromech. Syst.19, 1050–1057 (2010). [CrossRef]
  22. D. R. Lide, ed., CRC Handbook of Chemistry and Physics(CRC, 2008).
  23. J. E. Bertie and Z. Lan, “Infrared intensities of liquids XX: the intensity of the OH stretching band of liquid water revisited, and the best current values of the optical constants of H2O(l) at 25C between 15,000 and 1 cm-1,” Appl. Spectrosc.50, 1047–1057 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited