OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 18 — Sep. 9, 2013
  • pp: 21329–21336

Time-resolved photoluminescence of silicon microstructures fabricated by femtosecond laser in air

Zhandong Chen, Qiang Wu, Ming Yang, Jianghong Yao, Romano A. Rupp, Yaan Cao, and Jingjun Xu  »View Author Affiliations


Optics Express, Vol. 21, Issue 18, pp. 21329-21336 (2013)
http://dx.doi.org/10.1364/OE.21.021329


View Full Text Article

Enhanced HTML    Acrobat PDF (1757 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Green photoluminescence (PL) from silicon microstructures fabricated by femtosecond laser in air was studied at different temperature by time-resolved spectroscopy. The PL decay profiles are well fitted by a stretched exponential function: I(t)=I(0)exp[ (t/τ) β ]. The dependence of the decay time constant τ and of the stretching index β on PL photon energy and on the temperature is investigated. A model of transport and recombination of the carriers is introduced as a possible explanation of the stretched exponential decay. The nonradiative recombination rate of the localized carriers, which is dependent on the carrier density and influenced by the trapping site density and the temperature, is deduced to be responsible for this kind of decay.

© 2013 OSA

OCIS Codes
(250.5230) Optoelectronics : Photoluminescence
(300.6500) Spectroscopy : Spectroscopy, time-resolved
(320.7130) Ultrafast optics : Ultrafast processes in condensed matter, including semiconductors

ToC Category:
Spectroscopy

History
Original Manuscript: July 15, 2013
Revised Manuscript: August 28, 2013
Manuscript Accepted: August 28, 2013
Published: September 4, 2013

Citation
Zhandong Chen, Qiang Wu, Ming Yang, Jianghong Yao, Romano A. Rupp, Yaan Cao, and Jingjun Xu, "Time-resolved photoluminescence of silicon microstructures fabricated by femtosecond laser in air," Opt. Express 21, 21329-21336 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-18-21329


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafer,” Appl. Phys. Lett.57(10), 1046–1048 (1990). [CrossRef]
  2. V. Lehmann and U. Gosele, “Porous silicon formation: A quantum wire effect,” Appl. Phys. Lett.58(8), 856–858 (1991). [CrossRef]
  3. T. Shimizu-lwayama, S. Nakao, and K. Saitoh, “Visible photoluminescence in Si+-implanted thermal oxide films on crystalline Si,” Appl. Phys. Lett.65(14), 1814–1816 (1994). [CrossRef]
  4. R. J. Walters, G. I. Bourianoff, and H. A. Atwater, “Field-effect electroluminescence in silicon nanocrystals,” Nat. Mater.4(2), 143–146 (2005). [CrossRef] [PubMed]
  5. K. Žídek, F. Trojánek, P. Malý, L. Ondič, I. Pelant, K. Dohnalová, L. Šiller, R. Little, and B. R. Horrocks, “Femtosecond luminescence spectroscopy of core states in silicon nanocrystals,” Opt. Express18(24), 25241–25249 (2010). [CrossRef] [PubMed]
  6. X. Chen, D. Uttamchandani, C. Trager-Cowan, and K. P. O’Donnell, “Luminescence from porous silicon,” Semicond. Sci. Technol.8(1), 92–96 (1993). [CrossRef]
  7. M. Zhu, Y. Han, R. B. Wehrspohn, C. Godet, R. Etemadi, and D. Ballutaud, “The origin of visible photoluminescence from silicon oxide thin films prepared by dual-plasma chemical vapor deposition,” J. Appl. Phys.83(10), 5386–5393 (1998). [CrossRef]
  8. T. Schmidt, A. I. Chizhik, A. M. Chizhik, K. Potrick, A. J. Meixner, and F. Huisken, “Radiative exciton recombination and defect luminescence observed in single silicon nanocrystals,” Phys. Rev. B86(12), 125302 (2012). [CrossRef]
  9. K. Kůsová, O. Cibulka, K. Dohnalová, I. Pelant, J. Valenta, A. Fucíková, K. Zídek, J. Lang, J. Englich, P. Matejka, P. Stepánek, and S. Bakardjieva, “Brightly luminescent organically capped silicon nanocrystals fabricated at room temperature and atmospheric pressure,” ACS Nano4(8), 4495–4504 (2010). [CrossRef] [PubMed]
  10. D. S. English, L. E. Pell, Z. Yu, P. F. Barbara, and B. A. Korgel, “Size tunable visible luminescence from individual organic monolayer stabilized silicon nanocrytal quantum dots,” Nano Lett.2(7), 681–685 (2002). [CrossRef]
  11. L. Tsybeskov, J. V. Vandyshev, and P. M. Fauchet, “Blue emission in porous silicon: Oxygen-related photoluminescence,” Phys. Rev. B Condens. Matter49(11), 7821–7824 (1994). [CrossRef] [PubMed]
  12. H. Tamura, M. Ruckschloss, T. Wirschem, and S. Veprek, “Origin of the green/blue luminescence from nanocrystalline silicon,” Appl. Phys. Lett.65(12), 1537–1539 (1994). [CrossRef]
  13. G. Ledoux, J. Gong, and F. Huisken, “Effect of passivation and aging on the photoluminescence of silicon nanocrystals,” Appl. Phys. Lett.79(24), 4028–4030 (2001). [CrossRef]
  14. V. Vinciguerra, G. Franzo, F. Priolo, F. Iacona, and C. Spinella, “Quantum confinement and recombination dynamics in silicon nanocrystals embedded in Si/SiO2 superlattices,” J. Appl. Phys.87(11), 8165–8173 (2000). [CrossRef]
  15. C. Wu, C. H. Crouch, L. Zhao, and E. Mazur, “Visible luminescence from silicon surfaces microstructured in air,” Appl. Phys. Lett.81(11), 1999–2001 (2002). [CrossRef]
  16. C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett.78(13), 1850–1852 (2001). [CrossRef]
  17. M. Y. Shen, C. H. Crouch, J. E. Carey, R. Younkin, E. Mazur, M. Sheehy, and C. M. Friend, “Formation of regular arrays of silicon microspikes by femtosecond laser irradiation through a mask,” Appl. Phys. Lett.82(11), 1715–1717 (2003). [CrossRef]
  18. J. E. Carey, C. H. Crouch, M. Y. Shen, and E. Mazur, “Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes,” Opt. Lett.30(14), 1773–1775 (2005). [CrossRef] [PubMed]
  19. Z. H. Huang, J. E. Carey, M. G. Liu, X. Y. Guo, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett.89(3), 033506 (2006). [CrossRef]
  20. Q. Wu, S. Guo, Y. Ma, F. Gao, C. Yang, M. Yang, X. Yu, X. Zhang, R. A. Rupp, and J. Xu, “Optical refocusing three-dimensional wide-field fluorescence lifetime imaging microscopy,” Opt. Express20(2), 960–965 (2012). [CrossRef] [PubMed]
  21. A. Menéndez-Manjón, S. Barcikowski, G. A. Shafeev, V. I. Mazhukin, and B. N. Chichkov, “Influence of beam intensity profile on the aerodynamic particle size distributions generated by femtosecond laser ablation,” Laser Part. Beams28(01), 45–52 (2010). [CrossRef]
  22. Y. L. Wang, C. Chen, X. C. Ding, L. Z. Chu, Z. C. Deng, W. H. Liang, J. Z. Chen, and G. S. Fu, “Nucleation and growth of nanoparticles during pulsed laser deposition in an ambient gas,” Laser Part. Beams29(01), 105–111 (2011). [CrossRef]
  23. S. Manickam, K. Venkatakrishnan, B. Tan, and V. Venkataramanan, “Study of silicon nanofibrous structure formed by femtosecond laser irradiation in air,” Opt. Express17(16), 13869–13874 (2009). [CrossRef] [PubMed]
  24. Z. Chen, Q. Wu, M. Yang, B. Tang, J. Yao, R. A. Rupp, Y. Cao, and J. Xu, “Generation and evolution of plasma during femtosecond laser ablation of silicon in different ambient gases,” Laser Part. Beams (to be published).
  25. M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, “Electronic states and luminescence in porous silicon quantum dots: The role of oxygen,” Phys. Rev. Lett.82(1), 197–200 (1999). [CrossRef]
  26. J. Martin, F. Cichos, F. Huisken, and C. von Borczyskowski, “Electron-phonon coupling and localization of excitons in single silicon nanocrystals,” Nano Lett.8(2), 656–660 (2008). [CrossRef] [PubMed]
  27. R. W. Collins, M. A. Paesler, and W. Paul, “The temperature dependence of photoluminescence in a-Si: H alloys,” Solid State Commun.34(10), 833–836 (1980). [CrossRef]
  28. R. Kohlrausch, “Nachtrag ueber die elastische Nachwirkung beim Cocon-und Glasfaden, und die hygroskopische Eigenschaft des ersteren,” Ann. Phys. (Leipzig)12, 393–399 (1847).
  29. B. Sturman, E. Podivilov, and M. Gorkunov, “Origin of stretched exponential relaxation for hopping-transport models,” Phys. Rev. Lett.91(17), 176602 (2003). [CrossRef] [PubMed]
  30. T. Bartel, M. Dworzak, M. Strassburg, A. Hoffmann, A. Strittmatter, and D. Bimberg, “Recombination dynamics of localized excitons in InGaN quantum dots,” Appl. Phys. Lett.85(11), 1946–1948 (2004). [CrossRef]
  31. M. Dovrat, Y. Goshen, J. Jedrzejewski, I. Balberg, and A. Sa’ar, “Radiative versus nonradiative decay processes in silicon nanocrystals probed by time-resolved photoluminescence spectroscopy,” Phys. Rev. B69(15), 155311 (2004). [CrossRef]
  32. S. E. Paje and J. Llopis, “Photoluminescence decay and time-resolved spectroscopy of cubic yttria-stabilized zirconia,” Appl. Phys., A Mater. Sci. Process.59(6), 569–574 (1994). [CrossRef]
  33. F. Sangghaleh, B. Bruhn, T. Schmidt, and J. Linnros, “Exciton lifetime measurements on single silicon quantum dots,” Nanotechnology24(22), 225204 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited