OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 18 — Sep. 9, 2013
  • pp: 21357–21364

Optical Kerr phase shift in a nanostructured nickel-doped zinc oxide thin solid film

C. Torres-Torres, B. A. Can-Uc, R. Rangel-Rojo, L. Castañeda, R. Torres-Martínez, C. I. García-Gil, and A. V. Khomenko  »View Author Affiliations


Optics Express, Vol. 21, Issue 18, pp. 21357-21364 (2013)
http://dx.doi.org/10.1364/OE.21.021357


View Full Text Article

Enhanced HTML    Acrobat PDF (951 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The optical Kerr effect exhibited by a nickel doped zinc oxide thin solid film was explored with femto- and pico-second pulses using the z-scan method. The samples were prepared by the ultrasonic spray pyrolysis technique. Opposite signs for the value of the nonlinear refractive index were observed in the two experiments. Self-defocusing together with a two-photon absorption process was observed with 120 ps pulses at 1064 nm, while a dominantly self-focusing effect accompanied by saturated absorption was found for 80 fs pulses at 825 nm. Regarding the nanostructured morphology of the resulting film, we attribute the difference in the two ultrafast optical responses to the different physical mechanism responsible of energy transfer generated by multiphoton processes under electronic and thermal effects.

© 2013 OSA

OCIS Codes
(160.4330) Materials : Nonlinear optical materials
(190.0190) Nonlinear optics : Nonlinear optics
(320.7110) Ultrafast optics : Ultrafast nonlinear optics

ToC Category:
Nonlinear Optics

History
Original Manuscript: June 27, 2013
Revised Manuscript: August 16, 2013
Manuscript Accepted: August 19, 2013
Published: September 4, 2013

Citation
C. Torres-Torres, B. A. Can-Uc, R. Rangel-Rojo, L. Castañeda, R. Torres-Martínez, C. I. García-Gil, and A. V. Khomenko, "Optical Kerr phase shift in a nanostructured nickel-doped zinc oxide thin solid film," Opt. Express 21, 21357-21364 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-18-21357


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Rigneault, J. M. Lourtioz, C. Delalande, and A. Levenson, Nanophotonics (ISTE Ltd, 2006).
  2. T. Cesca, P. Calvelli, G. Battaglin, P. Mazzoldi, and G. Mattei, “Local-field enhancement effect on the nonlinear optical response of gold-silver nanoplanets,” Opt. Express20(4), 4537–4547 (2012). [CrossRef] [PubMed]
  3. Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys.98(4), 041301 (2005). [CrossRef]
  4. E. Fortunato, A. Gonçalves, A. Pimentel, P. Barquinha, G. Gonçalves, L. Pereira, I. Ferreira, and R. Martins, “Zinc oxide, a multifunctional material: from material to device applications,” Appl. Phys., A Mater. Sci. Process.96(1), 197–205 (2009). [CrossRef]
  5. Y. Mai and A. Watanabe, “Comparison of electronic structures of doped ZnO by various impurity elements calculated by a first principle pseudopotential method,” J. Mater. Sci. Mater. Electron.15(11), 743–749 (2004).
  6. B. Claflin, D. C. Look, and D. R. Norton, “Changes in electrical characteristics of ZnO thin films due to environmental factors,” J. Electron. Mater.36(4), 442–445 (2007). [CrossRef]
  7. J. W. Rasmussen, E. Martinez, P. Louka, and D. G. Wingett, “Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications,” Expert Opin. Drug Deliv.7(9), 1063–1077 (2010). [CrossRef] [PubMed]
  8. S. John, S. Marpu, J. Li, M. Omary, Z. Hu, Y. Fujita, and A. Neogi, “Hybrid zinc oxide nanoparticles for biophotonics,” J. Nanosci. Nanotechnol.10(3), 1707–1712 (2010). [CrossRef] [PubMed]
  9. Q. J. Ren, S. Filippov, S. L. Chen, M. Devika, N. Koteeswara Reddy, C. W. Tu, W. M. Chen, and I. A. Buyanova, “Evidence for coupling between exciton emissions and surface plasmon in Ni-coated ZnO nanowires,” Nanotechnology23(42), 425201 (2012). [CrossRef] [PubMed]
  10. X. Xiang, X. T. Zu, S. Zhu, and L. M. Wang, “Optical properties of metallic nanoparticles in Ni-ion-implanted α-Al2O3 single crystals,” Appl. Phys. Lett.84(1), 52–54 (2004). [CrossRef]
  11. B. E. Urban, J. Lin, O. Kumar, K. Senthilkumar, Y. Fujita, and A. Neogi, “Optimization of nonlinear optical properties of ZnO micro and nanocrystals for biophotonics,” Opt. Mater. Express1(4), 658–669 (2011). [CrossRef]
  12. A. I. Ryasnyanskiy, B. Palpant, S. Debrus, U. Pal, and A. L. Stepanov, “Optical nonlinearities of Au nanoparticles embedded in a zinc oxide matrix,” Opt. Commun.273(2), 538–543 (2007). [CrossRef]
  13. P. Bermel, A. Rodriguez, J. D. Joannopoulos, and M. Soljacić, “Tailoring optical nonlinearities via the Purcell effect,” Phys. Rev. Lett.99(5), 053601 (2007). [CrossRef] [PubMed]
  14. V. Yannopapas, “Enhancement of nonlinear susceptibilities near plasmonic metamaterials,” Opt. Commun.283(8), 1647–1649 (2010). [CrossRef]
  15. L. Castañeda, C. Torres-Torres, R. Rangel-Rojo, L. Tamayo-Rivera, and R. Torres-Martínez, “Enhancement of the optical Kerr effect by photobleaching in nanostructured indium-doped zinc oxide thin films,” Phys. Scr.86(5), 055601 (2012). [CrossRef]
  16. M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.26(4), 760–769 (1990). [CrossRef]
  17. R. Schmidt-Grund, N. Ashkenov, M. M. Schubert, W. Czakai, D. Faltermeier, G. Benndorf, H. Hochmuth, M. Lorenz, and M. Grundmann, “Temperature-dependence of the refractive index and the optical transitions at the fundamental band-gap of ZnO,” Phys. of Semicond. 28th Int. Conf. 271–272 (2007). [CrossRef]
  18. M. Falconieri, “Thermo-optical effects in Z -scan measurements using high-repetition-rate lasers,” J. Opt. A, Pure Appl. Opt.1(6), 662–667 (1999). [CrossRef]
  19. D. Cotter, M. G. Burt, and R. J. Manning, “Below-Band-Gap Third-Order Optical Nonlinearity of Nanometer-Size Semiconductor Crystallites,” Phys. Rev. Lett.68(8), 1200–1203 (1992). [CrossRef] [PubMed]
  20. P. Pushparajah, A. K. Arof, and S. Radhakrishna, “Physical properties of spray pyrolysed pure and doped ZnO thin films,” J. Phys. D Appl. Phys.27(7), 1518–1521 (1994). [CrossRef]
  21. L. Irimpan, V. P. N. Nampoori, P. Radhakrishnan, B. Krishnan, and A. Deepthy, “Size-dependent enhancement of nonlinear optical properties in nanocolloids of ZnO,” J. Appl. Phys.103(3), 033105 (2008).
  22. A. Persoons, “Nonlinear optics, chirality, magneto-optics:a serendipitous road,” Opt. Mater. Express1(1), 5–16 (2011). [CrossRef]
  23. Y. P. Chan, J. H. Lin, C. C. Hsu, and W. F. Hsieh, “Near-resonant high order nonlinear absorption of ZnO thin films,” Opt. Express16(24), 19900–19908 (2008). [CrossRef] [PubMed]
  24. J. A. Reyes-Esqueda, V. Rodríguez-Iglesias, H. G. Silva-Pereyra, C. Torres-Torres, A. L. Santiago-Ramírez, J. C. Cheang-Wong, A. Crespo-Sosa, L. Rodríguez-Fernández, A. López-Suárez, and A. Oliver, “Anisotropic linear and nonlinear optical properties from anisotropy-controlled metallic nanocomposites,” Opt. Express17(15), 12849–12868 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited