OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 18 — Sep. 9, 2013
  • pp: 21365–21373

Adjustable exciton-photon coupling with giant Rabi-splitting using layer-by-layer J-aggregate thin films in all-metal mirror microcavities

Hung-Sen Wei, Cheng-Chung Jaing, Yan-Ting Chen, Chen-Chih Lin, Ching-Wei Cheng, Chia-Hua Chan, Cheng-Chung Lee, and Jui-Fen Chang  »View Author Affiliations

Optics Express, Vol. 21, Issue 18, pp. 21365-21373 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1430 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Developing of highly absorbing thin films is essential for exploration of light-matter interaction and polariton-based applications. We demonstrate here layer-by-layer assembled J-aggregate thin films of (DEDOC) cyanine dyes that have high absorption coefficient and controlled thicknesses, leading to adjustable exciton-photon coupling and Rabi splitting exceeding 400 meV at room temperature in all-metal mirror microcavities.

© 2013 OSA

OCIS Codes
(160.4890) Materials : Organic materials
(230.4170) Optical devices : Multilayers
(240.5420) Optics at surfaces : Polaritons
(310.6860) Thin films : Thin films, optical properties
(140.3945) Lasers and laser optics : Microcavities

ToC Category:
Thin Films

Original Manuscript: July 29, 2013
Revised Manuscript: August 26, 2013
Manuscript Accepted: August 26, 2013
Published: September 4, 2013

Hung-Sen Wei, Cheng-Chung Jaing, Yan-Ting Chen, Chen-Chih Lin, Ching-Wei Cheng, Chia-Hua Chan, Cheng-Chung Lee, and Jui-Fen Chang, "Adjustable exciton-photon coupling with giant Rabi-splitting using layer-by-layer J-aggregate thin films in all-metal mirror microcavities," Opt. Express 21, 21365-21373 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and P. Bhattacharya, “Room temperature ultralow threshold GaN nanowire polariton laser,” Phys. Rev. Lett.107(6), 066405 (2011). [CrossRef] [PubMed]
  2. S. Christopoulos, G. B. von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett.98(12), 126405 (2007). [CrossRef] [PubMed]
  3. S. Kéna-Cohen and S. Forrest, “Room-temperature polariton lasing in an organic single-crystal microcavity,” Nat. Photonics4(6), 371–375 (2010). [CrossRef]
  4. C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett.69(23), 3314–3317 (1992). [CrossRef] [PubMed]
  5. D. G. Lidzey, D. D. C. Bradley, A. Armitage, S. Walker, and M. S. Skolnick, “Photon-mediated hybridization of Frenkel excitons in organic semiconductor microcavities,” Science288(5471), 1620–1623 (2000). [CrossRef] [PubMed]
  6. D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature395(6697), 53–55 (1998). [CrossRef]
  7. R. J. Holmes and S. R. Forrest, “Strong exciton-photon coupling in organic materials,” Org. Electron.8(2-3), 77–93 (2007). [CrossRef]
  8. T. Virgili, L. Lüer, G. Cerullo, G. Lanzani, S. Stagira, D. Coles, A. J. H. M. Meijer, and D. G. Lidzey, “Role of intramolecular dynamics on intermolecular coupling in cyanine dye,” Phys. Rev. B81(12), 125317 (2010). [CrossRef]
  9. R. J. Holmes and S. R. Forrest, “Strong exciton-photon coupling and exciton hybridization in a thermally evaporated polycrystalline film of an organic small molecule,” Phys. Rev. Lett.93(18), 186404 (2004). [CrossRef] [PubMed]
  10. S. Kéna-Cohen, M. Davanço, and S. R. Forrest, “Strong exciton-photon coupling in an organic single crystal microcavity,” Phys. Rev. Lett.101(11), 116401 (2008). [CrossRef] [PubMed]
  11. S. Kéna-Cohen and S. R. Forrest, “Green polariton photoluminescence using the red-emitting phosphor PtOEP,” Phys. Rev. B76(7), 075202 (2007). [CrossRef]
  12. D. G. Lidzey, D. D. C. Bradley, T. Virgili, A. Armitage, M. S. Skolnick, and S. Walker, “Room temperature polariton emission from strongly coupled organic semiconductor microcavities,” Phys. Rev. Lett.82(16), 3316–3319 (1999). [CrossRef]
  13. D. G. Lidzey, A. M. Fox, M. D. Rahn, M. S. Skolnick, V. M. Agranovich, and S. Walker, “Experimental study of light emission from strongly coupled organic semiconductor microcavities following nonresonant laser excitation,” Phys. Rev. B65(19), 195312 (2002). [CrossRef]
  14. N. Somaschi, L. Mouchliadis, D. Coles, I. E. Perakis, D. G. Lidzey, P. G. Lagoudakis, and P. G. Savvidis, “Ultrafast polariton population build-up mediated by molecular phonons in organic microcavities,” Appl. Phys. Lett.99(14), 143303 (2011). [CrossRef]
  15. S. Hayashi, Y. Ishigaki, and M. Fujii, “Plasmonic effects on strong exciton-photon coupling in metal-insulator-metal microcavities,” Phys. Rev. B86(4), 045408 (2012). [CrossRef]
  16. M. S. Bradley, J. R. Tischler, and V. Bulović, “Layer-by-layer J-aggregate thin films with a peak absorption constant of 106 cm−1,” Adv. Mater.17(15), 1881–1886 (2005). [CrossRef]
  17. J. R. Tischler, M. S. Bradley, V. Bulović, J. H. Song, and A. Nurmikko, “Strong coupling in a microcavity LED,” Phys. Rev. Lett.95(3), 036401 (2005). [CrossRef] [PubMed]
  18. G. H. Lodden and R. J. Holmes, “Thermally activated population of microcavity polariton states under optical and electrical excitation,” Phys. Rev. B83(7), 075301 (2011). [CrossRef]
  19. P. G. Savvidis, J. J. Baumberg, R. M. Stevenson, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts, “Angle-resonant stimulated polariton amplifier,” Phys. Rev. Lett.84(7), 1547–1550 (2000). [CrossRef] [PubMed]
  20. T. Schwartz, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Reversible switching of ultrastrong light-molecule coupling,” Phys. Rev. Lett.106(19), 196405 (2011). [CrossRef] [PubMed]
  21. T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and Rhodamine 6G molecules,” Phys. Rev. Lett.103(5), 053602 (2009). [CrossRef] [PubMed]
  22. A. Salomon, C. Genet, and T. W. Ebbesen, “Molecule-light complex: dynamics of hybrid molecule-surface plasmon states,” Angew. Chem. Int. Ed. Engl.48(46), 8748–8751 (2009). [CrossRef] [PubMed]
  23. Y. Obara, K. Saitoh, M. Oda, and T. Tani, “Anomalous reflection properties in high density limit fibril shaped PIC-J aggregates in microcavity structure,” Phys. Status Solidi8(2c), 595–597 (2011). [CrossRef]
  24. J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plamon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B71(3), 035424 (2005). [CrossRef]
  25. D. M. Coles, P. Michetti, C. Clark, W. C. Tsoi, A. M. Adawi, J. S. Kim, and D. G. Lidzey, “Vibrationally assisted polariton-relaxation processes in strongly coupled organic-semiconductor microcavities,” Adv. Funct. Mater.21(19), 3691–3696 (2011). [CrossRef]
  26. R. Nitsche and T. Fritz, “Determination of model-free Kramers-Kronig consistent optical constants of thin absorbing films from just one spectral measurement: application to organic semiconductors,” Phys. Rev. B70(19), 195432 (2004). [CrossRef]
  27. P. A. Hobson, W. L. Barnes, D. G. Lidzey, G. A. Gehring, D. M. Whittaker, M. S. Skolnick, and S. Walker, “Strong exciton-photon coupling in a low-Q all-metal mirror microcavity,” Appl. Phys. Lett.81(19), 3519 (2002). [CrossRef]
  28. A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford University Press, 1997)
  29. M. S. Skolnick, T. A. Fisher, and D. M. Whittaker, “Strong coupling phenomena in quantum microcavity structures,” Semicond. Sci. Technol.13(7), 645–669 (1998). [CrossRef]
  30. V. Savona, L. C. Andreani, P. Schwendimann, and A. Quattropani, “Quantum well excitons in semiconductor microcavities: unified treatment of weak and strong coupling regimes,” Solid State Commun.93(9), 733–739 (1995). [CrossRef]
  31. K. T. Kamtekar, A. P. Monkman, and M. R. Bryce, “Recent advances in white organic light-emitting materials and devices (WOLEDs),” Adv. Mater.22(5), 572–582 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited