OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 18 — Sep. 9, 2013
  • pp: 21380–21394

Spectral tuning of lasing emission from optofluidic droplet microlasers using optical stretching

Mehdi Aas, Alexandr Jonáš, Alper Kiraz, Oto Brzobohatý, Jan Ježek, Zdeněk Pilát, and Pavel Zemánek  »View Author Affiliations


Optics Express, Vol. 21, Issue 18, pp. 21380-21394 (2013)
http://dx.doi.org/10.1364/OE.21.021380


View Full Text Article

Enhanced HTML    Acrobat PDF (3209 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We introduce tunable optofluidic microlasers based on active optical resonant cavities formed by optically stretched, dye-doped emulsion droplets confined in a dual-beam optical trap. To achieve tunable dye lasing, optically pumped droplets of oil dispersed in water are stretched by light in the dual-beam trap. Subsequently, resonant path lengths of whispering gallery modes (WGMs) propagating in the droplet are modified, leading to shifts in the microlaser emission wavelengths. Using this technique, we present all-optical, almost reversible spectral tuning of the lasing WGMs and show that the direction of tuning depends on the position of the pump beam focus on the droplet. In addition, we study the effects of temperature changes on the spectral position of lasing WGMs and demonstrate that droplet heating leads to red-tuning of the droplet lasing wavelength.

© 2013 OSA

OCIS Codes
(140.2050) Lasers and laser optics : Dye lasers
(300.2530) Spectroscopy : Fluorescence, laser-induced
(140.3945) Lasers and laser optics : Microcavities
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: July 24, 2013
Revised Manuscript: August 27, 2013
Manuscript Accepted: August 27, 2013
Published: September 4, 2013

Virtual Issues
Vol. 8, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Mehdi Aas, Alexandr Jonáš, Alper Kiraz, Oto Brzobohatý, Jan Ježek, Zdeněk Pilát, and Pavel Zemánek, "Spectral tuning of lasing emission from optofluidic droplet microlasers using optical stretching," Opt. Express 21, 21380-21394 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-18-21380


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. V. Datsyuk, “Optics of microdroplets,” J. Mol. Liq.93, 159–175 (2001). [CrossRef]
  2. G. C. Righini, Y. Dumeige, P. Feron, M. Ferrari, G. N. Conti, D. Ristic, and S. Soria, “Whispering gallery mode microresonators: Fundamentals and applications,” Riv. Nuovo Cimento34, 435–488 (2011).
  3. K. J. Vahala, “Optical microcavities,” Nature424, 839–846 (2003). [CrossRef] [PubMed]
  4. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature442, 381–386 (2006). [CrossRef] [PubMed]
  5. S.-X. Qian, J. B. Snow, H. M. Tzeng, and R. K. Chang, “Lasing droplets: Highlighting the liquid-air interface by laser emission,” Science231, 486–488 (1986). [CrossRef] [PubMed]
  6. J. B. Snow, S.-X. Qian, and R. K. Chang, “Stimulated Raman scattering from individual water and ethanol droplets at morphology-dependent resonances,” Opt. Lett.10, 37–39 (1985). [CrossRef] [PubMed]
  7. A. Sennaroglu, A. Kiraz, M. A. Dündar, A. Kurt, and A. L. Demirel, “Raman lasing near 630 nm from stationary glycerol-water microdroplets on a superhydrophobic surface,” Opt. Lett.32, 2197–2199 (2007). [CrossRef] [PubMed]
  8. A. Kiraz, A. Kurt, M. A. Dündar, and A. L. Demirel, “Simple largely tunable optical microcavity,” Appl. Phys. Lett.89, 081118 (2006). [CrossRef]
  9. A. Kiraz, Y. Karadağ, and A. F. Coskun, “Spectral tuning of liquid microdroplets standing on a superhydrophobic surface using electrowetting,” Appl. Phys. Lett.92, 191104 (2008). [CrossRef]
  10. A. Kiraz, Y. Karadag, S. C. Yorulmaz, and M. Muradoglu, “Reversible photothermal tuning of a salty water microdroplet,” Phys. Chem. Chem. Phys.11, 2597–2600 (2009). [CrossRef] [PubMed]
  11. G. Chen, M. M. Mazumder, Y. R. Chemla, A. Serpengüzel, R. K. Chang, and S. C. Hill, “Wavelength variation of laser emission along the entire rim of slightly deformed microdroplets,” Opt. Lett.18, 1993–1995 (1993). [CrossRef] [PubMed]
  12. S. C. Yorulmaz, M. Mestre, M. Muradoglu, B. E. Alaca, and A. Kiraz, “Controlled observation of nondegenerate cavity modes in a microdroplet on a superhydrophobic surface,” Opt. Commun.282, 3024–3027 (2009). [CrossRef]
  13. M. Saito, H. Shimatani, and H. Naruhashi, “Tunable whispering gallery mode emission from a microdroplet in elastomer,” Opt. Express16, 11915–11919 (2008). [CrossRef] [PubMed]
  14. M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics3, 595–600 (2009). [CrossRef]
  15. M. Tanyeri, R. Perron, and I. M. Kennedy, “Lasing droplets in a microfabricated channel,” Opt. Lett.32, 2529–2531 (2007). [CrossRef] [PubMed]
  16. M. Aas, A. Jonáš, and A. Kiraz, “Lasing in optically manipulated, dye-doped emulsion microdroplets,” Opt. Commun.290, 183–187 (2013). [CrossRef]
  17. S. K. Y. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip9, 2767–2771 (2009). [CrossRef] [PubMed]
  18. S. K. Y. Tang, R. Derda, Q. Quan, M. Loncar, and G. M. Whitesides, “Continuously tunable microdroplet-laser in a microfluidic channel,” Opt. Express19, 2204–2215 (2011). [CrossRef] [PubMed]
  19. J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: A novel laser tool to micromanipulate cells,” Biophys. J.81, 767–784 (2001). [CrossRef] [PubMed]
  20. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett.24, 156–159 (1970). [CrossRef]
  21. A. Constable, J. Kim, J. Mervis, F. Zarinetchi, and M. Prentiss, “Demonstration of a fiber-optical light-force trap,” Opt. Lett.18, 1867–1869 (1993). [CrossRef] [PubMed]
  22. T. Čižmár, O. Brzobohatý, K. Dholakia, and P. Zemánek, “The holographic optical micro-manipulation system based on counter-propagating beams,” Laser Phys. Lett.8, 50–56 (2011). [CrossRef]
  23. P. C. F. Møller and L. B. Oddershede, “Quantification of droplet deformation by electromagnetic trapping,” EPL88, 48005 (2009). [CrossRef]
  24. A. D. Ward, M. G. Berry, C. D. Mellor, and C. D. Bain, “Optical sculpture: controlled deformation of emulsion droplets with ultralow interfacial tensions using optical tweezers,” Chem. Commun.2006, 4515–4517 (2006). [CrossRef]
  25. S. Holler, N. L. Goddard, and S. Arnold, “Spontaneous emission spectra from microdroplets,” J. Chem. Phys.108, 6545–6547 (1998). [CrossRef]
  26. J. Drelich, C. Fang, and C. L. White, The Encyclopedia of Surface and Colloid Science: Measurement of Interfacial Tension in Fluid/Fluid Systems(Marcel- Dekker, 2002).
  27. R. Aveyard, B. P. Binks, S. Clark, and J. Mead, “Interfacial tension minima in oil-water-surfactant systems. Behaviour of alkaneaqueous NaCl systems containing aerosol OT,” J. Chem. Soc., Faraday Trans. 1, 82, 125–142 (1986). [CrossRef]
  28. H. Sosa-Martínez and J. C. Gutiérrez-Vega, “Optical forces on a Mie spheroidal particle arbitrarily oriented in a counterpropagating trap,” J. Opt. Soc. Am. B26, 2109–2116 (2009). [CrossRef]
  29. S. Ramanujan, Collected papers of Srinivasa Ramanujan (Cambridge University Press, 1927).
  30. S. Ebert, K. Travis, B. Lincoln, and J. Guck, “Fluorescence ratio thermometry in a microfluidic dual-beam laser trap,” Opt. Express15, 15493–15499 (2007). [CrossRef] [PubMed]
  31. C. C. Lam, P. T. Leung, and K. Young, “Explicit asymptotic formulas for the positions, widths, and strengths of resonances in Mie scattering,” J. Opt. Soc. Am. B9, 1585–1592 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited