OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 18 — Sep. 9, 2013
  • pp: 21414–21422

Plasmon resonance of silver micro–sphere in fiber taper

Jin Li, Hanyang Li, Kaiyang Wang, Xuenan Zhang, Chengbao Yao, Yundong Zhang, and Ping Yuan  »View Author Affiliations

Optics Express, Vol. 21, Issue 18, pp. 21414-21422 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3001 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have experimentally studied the plasmon resonance phenomenon of a silver micro–sphere with a diameter of 2.3μm in cone–shaped air cavity of a hollow fiber taper. To take insight into the plasmon resonance phenomenon, we move the micro–sphere along the fiber and observe the significant shift of the resonance peak. We also explore the light response in both infrared and visible wavelength band by finite difference time domain method. The significant variations of the magnetic and power field distribution are observed. The interesting results imply that the configuration has great potential in optical sensors and color filters.

© 2013 OSA

OCIS Codes
(140.3510) Lasers and laser optics : Lasers, fiber
(060.4005) Fiber optics and optical communications : Microstructured fibers
(250.4390) Optoelectronics : Nonlinear optics, integrated optics

ToC Category:
Optics at Surfaces

Original Manuscript: April 19, 2013
Revised Manuscript: August 26, 2013
Manuscript Accepted: August 27, 2013
Published: September 4, 2013

Jin Li, Hanyang Li, Kaiyang Wang, Xuenan Zhang, Chengbao Yao, Yundong Zhang, and Ping Yuan, "Plasmon resonance of silver micro–sphere in fiber taper," Opt. Express 21, 21414-21422 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. J. Kim and D. J. Jang, “Laser–induced nanowelding of gold nanoparticles,” Appl. Phys. Lett.86(3), 033112 (2005). [CrossRef]
  2. Y. Nishijima, L. Rosa, and S. Juodkazis, “Surface plasmon resonances in periodic and random patterns of gold nano-disks for broadband light harvesting,” Opt. Express20(10), 11466–11477 (2012). [CrossRef] [PubMed]
  3. N. Stokes, B. H. Jia, and M. Gu, “Design of lumpy metallic nanoparticles for broadband and wide–angle light scattering,” Appl. Phys. Lett.101(14), 141112 (2012). [CrossRef]
  4. J. Jayabalan, A. Singh, and R. Chari, “Effect of edge smoothening on the extinction spectra of metal nanoparticles,” Appl. Phys. Lett.97(4), 041904 (2010). [CrossRef]
  5. M. Cao, M. Wang, and N. Gu, “Plasmon singularities from metal nanoparticles in active media: influence of particle shape on the gain threshold,” Plasmonics7(2), 347–351 (2012). [CrossRef]
  6. L. H. Shi, L. Gao, S. L. He, and B. Li, “Superlens from metal–dielectric composites of nonspherical particles,” Phys. Rev. B76(4), 045116 (2007). [CrossRef]
  7. F. Buatier de Mongeot and U. Valbusa, “Applications of metal surfaces nanostructured by ion beam sputtering,” J. Phys. Condens. Matter21(22), 224022 (2009). [CrossRef] [PubMed]
  8. G. Bachelier, I. R. Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Multipolar second–harmonic generation in noble metal nanoparticles,” J. Opt. Soc. Am. B25(6), 955–960 (2008). [CrossRef]
  9. E. Plum, V. A. Fedotov, and N. I. Zheludev, “Asymmetric transmission: a generic property of two–dimensional periodic patterns,” J. Opt.13(2), 024006 (2011). [CrossRef]
  10. F. Koenderink, R. E. Waele, J. C. Prangsma, and A. Polman, “Experimental evidence for large dynamic effects on the plasmon dispersion of subwavelength metal nanoparticle waveguides,” Phys. Rev. B76(20), 201403 (2007). [CrossRef]
  11. H. Y. Li, Y. D. Zhang, J. Li, and L. S. Qiang, “Observation of microsphere movement driven by optical pulse,” Opt. Lett.36(11), 1996–1998 (2011). [CrossRef] [PubMed]
  12. A. A. Earp and G. B. Smith, “Metal nanoparticle plasmonics inside reflecting metal films,” Appl. Phys. Lett.96(24), 243108 (2010). [CrossRef]
  13. S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett.91(4), 043902 (2003). [CrossRef] [PubMed]
  14. P. Lu, L. Q. Men, K. Sooley, and Q. Y. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett.94(13), 131110 (2009). [CrossRef]
  15. S. Bohman, A. Suda, M. Kaku, M. Nurhuda, T. Kanai, S. Yamaguchi, and K. Midorikawa, “Generation of 5 fs, 0.5 TW pulses focusable to relativistic intensities at 1 kHz,” Opt. Express16(14), 10684–10689 (2008). [CrossRef] [PubMed]
  16. S. Bohman, A. Suda, T. Kanai, S. Yamaguchi, and K. Midorikawa, “Generation of 5.0 fs, 5.0 mJ pulses at 1 kHz using hollow–fiber pulse compression,” Optim. Lett.35(11), 1887–1889 (2010). [CrossRef]
  17. T. Le, J. Bethge, J. Skibina, and G. Steinmeyer, “Hollow fiber for flexible sub-20-fs pulse delivery,” Opt. Lett.36(4), 442–444 (2011). [CrossRef] [PubMed]
  18. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007), Chap. 5.
  19. H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, “Resonant light scattering from metal nanoparticles: practical analysis beyond Rayleigh approximation,” Appl. Phys. Lett.83(22), 4625 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited