OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 18 — Sep. 9, 2013
  • pp: 21423–21432

Fiber looped phase conjugation of polarization multiplexed signals for pre-compensation of fiber nonlinearity effect

Mark D. Pelusi  »View Author Affiliations

Optics Express, Vol. 21, Issue 18, pp. 21423-21432 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2904 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Compensation of nonlinear distortion of polarization-multiplexed (PolMux) signals in optical fiber is evaluated experimentally using all-optical signal pre-distortion and fiber loop phase-conjugation at the transmitter. An improved bit error rate is shown for high baud rate, 80 Gb/s RZ-DPSK PolMux signals before transmission in a 728 km long dispersion-managed fiber link employing a direct detection receiver. The partial compensation of nonlinear distortion for both single channel and 3 × 80 Gb/s WDM PolMux signals is observed, despite the impact from the inter-polarization nonlinearity and the associated polarization scattering. Evidence of the limited compensation of inter-polarization nonlinearity is shown.

© 2013 OSA

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(070.4340) Fourier optics and signal processing : Nonlinear optical signal processing
(070.5040) Fourier optics and signal processing : Phase conjugation
(290.5855) Scattering : Scattering, polarization

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: May 22, 2013
Revised Manuscript: August 21, 2013
Manuscript Accepted: August 22, 2013
Published: September 4, 2013

Mark D. Pelusi, "Fiber looped phase conjugation of polarization multiplexed signals for pre-compensation of fiber nonlinearity effect," Opt. Express 21, 21423-21432 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. J.  Xia, “Optical channel capacity – From Mb/s to Tb/s and beyond,” Opt. Fiber Technol. 17(5), 328–334 (2011). [CrossRef]
  2. S. J.  Savory, G.  Gavioli, E.  Torrengo, P.  Poggiolini, “Impact of interchannel nonlinearities on a split-step intrachannel nonlinear equalizer,” IEEE Photon. Technol. Lett. 22(10), 673–675 (2010). [CrossRef]
  3. W. Yan, Z. Tao, L. Dou, L. Li, S. Oda, T. Tanimura, T. Hoshida, and J. C. Rasmussen, “Low complexity digital perturbation back-propagation,” in Proc. ECOC 2011, paper Tu.3.A.2, 2011.
  4. S.  Watanabe, S.  Kaneko, T.  Chikama, “Long-haul fiber transmission using optical phase conjugation,” Opt. Fiber Technol. 2(2), 169–178 (1996). [CrossRef]
  5. A.  Chowdhury, G.  Raybon, R.-J.  Essiambre, J. H.  Sinsky, A.  Adamiecki, J.  Leuthold, C. R.  Doerr, S.  Chandrasekhar, “Compensation of intrachannel nonlinearities in 40-Gb/s pseudolinear systems using optical-phase conjugation,” J. Lightwave Technol. 23(1), 172–177 (2005). [CrossRef]
  6. S. L.  Jansen, D.  van den Borne, P. M.  Krummrich, S.  Spälter, G.-D.  Khoe, H.  de Waardt, “Long-haul DWDM transmission systems employing optical phase conjugation,” IEEE Sel. Top. Quantum Electron. 12(4), 505–520 (2006). [CrossRef]
  7. P.  Minzioni, “Nonlinearity compensation in a fiber-optic link by optical phase conjugation,” Fiber Integr. Opt. 28(3), 179–209 (2009). [CrossRef]
  8. P.  Minzioni, V.  Pusino, I.  Cristiani, L.  Marazzi, M.  Martinelli, C.  Langrock, M. M.  Fejer, V.  Degiorgio, “Optical phase conjugation in phase-modulated transmission systems: experimental comparison of different nonlinearity-compensation methods,” Opt. Express 18(17), 18119–18124 (2010). [CrossRef] [PubMed]
  9. M. D.  Pelusi, “WDM signal all-optical precompensation of Kerr nonlinearity in dispersion-managed fibers,” IEEE Photon. Technol. Lett. 25(1), 71–74 (2013). [CrossRef]
  10. R.  Khosravani, Y. W.  Song, Y.  Xie, L.-S.  Yan, A. E.  Willner, C. R.  Menyuk, “Bit-pattern-dependent polarization rotation in first-order PMD-compensated WDM systems,” Opt. Commun. 257(1), 191–196 (2006). [CrossRef]
  11. L. F.  Mollenauer, J. P.  Gordon, F.  Heismann, “Polarization scattering by soliton-soliton collisions,” Opt. Lett. 20(20), 2060–2062 (1995). [CrossRef] [PubMed]
  12. B. C.  Collings, L.  Boivin, “Nonlinear polarization evolution induced by cross-phase modulation and its impact on transmission systems,” IEEE Photon. Technol. Lett. 12(11), 1582–1584 (2000). [CrossRef]
  13. C.  Xie, “Impact of nonlinear and polarization effects in coherent systems,” Opt. Express 19(26), B915–B930 (2011). [CrossRef] [PubMed]
  14. A.  Mecozzi, F.  Matera, “Polarization scattering by intra-channel collisions,” Opt. Express 20(2), 1213–1218 (2012). [CrossRef] [PubMed]
  15. C.  Vinegoni, M.  Wegmuller, B.  Huttner, N.  Gisin, “Measurement of nonlinear polarization rotation in a highly birefringent optical fibre using a Faraday mirror,” J. Opt. A, Pure Appl. Opt. 2(4), 314–318 (2000). [CrossRef]
  16. M.  Martinelli, “A universal compensator for polarization changes induced by birefringence on a retracing beam,” Opt. Commun. 72(6), 341–344 (1989). [CrossRef]
  17. P.  Martelli, P.  Boffi, M.  Ferrario, L.  Marazzi, P.  Parolari, R.  Siano, V.  Pusino, P.  Minzioni, I.  Cristiani, C.  Langrock, M. M.  Fejer, M.  Martinelli, V.  Degiorgio, “All-optical wavelength conversion of a 100-Gb/s polarization-multiplexed signal,” Opt. Express 17(20), 17758–17763 (2009). [CrossRef] [PubMed]
  18. L. Marazzi, P. Parolari, P. Martelli, R. Siano, P. Boffi, M. Ferrario, A. Righetti, M. Martinelli, V. Pusino, P. Minzioni, I. Cristiani, V. Degiorgio, C. Langrock, and M. M. Fejer, “Real-time 100-Gb/s POLMUX RZ-DQPSK transmission over uncompensated 500 km of SSMF by optical phase conjugation,” in Proc OFC/NFOEC 2009, paper JWA44 (2009). [CrossRef]
  19. A.  Mecozzi, M.  Tabacchiera, F.  Matera, M.  Settembre, “Intra-channel nonlinearity in differentially phase-modulated transmission,” Opt. Express 19(5), 3990–3995 (2011). [CrossRef] [PubMed]
  20. F.  Curti, B.  Daino, Q.  Mao, F.  Matera, C. G.  Someda, “Concatenation of polarisation dispersion in single-mode fibres,” Electron. Lett. 25(4), 290–292 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited