OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 18 — Sep. 9, 2013
  • pp: 21456–21465

High performance GaN-based LEDs on patterned sapphire substrate with patterned composite SiO2/Al2O3 passivation layers and TiO2/Al2O3 DBR backside reflector

Hao Guo, Xiong Zhang, Hongjun Chen, Peiyuan Zhang, Honggang Liu, Hudong Chang, Wei Zhao, Qinghua Liao, and Yiping Cui  »View Author Affiliations


Optics Express, Vol. 21, Issue 18, pp. 21456-21465 (2013)
http://dx.doi.org/10.1364/OE.21.021456


View Full Text Article

Enhanced HTML    Acrobat PDF (1289 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

GaN-based light-emitting diodes (LEDs) on patterned sapphire substrate (PSS) with patterned composite SiO2/Al2O3 passivation layers and TiO2/Al2O3 distributed Bragg reflector (DBR) backside reflector have been proposed and fabricated. Highly passivated Al2O3 layer deposited on indium tin oxide (ITO) layer with excellent uniformity and quality has been achieved with atomic layer deposition (ALD) technology. With a 60 mA current injection, an enhancement of 21.6%, 59.7%, and 63.4% in the light output power (LOP) at 460 nm wavelength was realized for the LED with the patterned composite SiO2/Al2O3 passivation layers, the LED with the patterned composite SiO2/Al2O3 passivation layers and Ag mirror + 3-pair TiO2/SiO2 DBR backside reflector, and the LED with the patterned composite SiO2/Al2O3 passivation layer and Ag mirror + 3-pair ALD-grown TiO2/Al2O3 DBR backside reflector as compared with the conventional LED only with a single SiO2 passivation layer, respectively.

© 2013 OSA

OCIS Codes
(230.0230) Optical devices : Optical devices
(230.1480) Optical devices : Bragg reflectors
(230.3670) Optical devices : Light-emitting diodes
(250.0250) Optoelectronics : Optoelectronics

ToC Category:
Optical Devices

History
Original Manuscript: June 5, 2013
Revised Manuscript: July 31, 2013
Manuscript Accepted: August 13, 2013
Published: September 5, 2013

Citation
Hao Guo, Xiong Zhang, Hongjun Chen, Peiyuan Zhang, Honggang Liu, Hudong Chang, Wei Zhao, Qinghua Liao, and Yiping Cui, "High performance GaN-based LEDs on patterned sapphire substrate with patterned composite SiO2/Al2O3 passivation layers and TiO2/Al2O3 DBR backside reflector," Opt. Express 21, 21456-21465 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-18-21456


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. Shibata, T. Uemura, H. Yamaguchi, and T. Yasukawa, “Fabrication of LED based on III-V nitride and its applications,” Phys. Status Solidi, A Appl. Res.200(1), 58–61 (2003). [CrossRef]
  2. A. I. Zhmakin, “Enhancement of light extraction from light emitting diodes,” Phys. Rep.498(4–5), 189–241 (2011). [CrossRef]
  3. J. J. Wierer, A. David, and M. M. Megens, “III-nitride photonic-crystal light-emitting diodes with high extraction efficiency,” Nat. Photonics3(3), 163–169 (2009). [CrossRef]
  4. M. K. Kwon, J. Y. Kim, I. K. Park, K. S. Kim, G. Y. Jung, S. J. Park, J. W. Kim, and Y. C. Kim, “Enhanced emission efficiency of GaN/ InGaN multiple quantum well light-emitting diode with an embedded photonic crystal,” Appl. Phys. Lett.92(25), 251110 (2008).
  5. K. Kim, J. Choi, J. B. Park, S. C. Jeon, J. S. Kim, and H. M. Lee, “Lattice constant effect of photonic crystals on the light output of blue light-emitting diodes,” IEEE Photon. Technol. Lett.20(17), 1455–1457 (2008). [CrossRef]
  6. Y. W. Cheng, S. C. Wang, Y. F. Yin, L. Y. Su, and J. J. Huang, “GaN-based LEDs surrounded with a two-dimensional nanohole photonic crystal structure for effective laterally guided mode coupling,” Opt. Lett.36(9), 1611–1613 (2011). [CrossRef] [PubMed]
  7. Y. J. Lee, H. C. Kuo, T. C. Lu, B. J. Su, and S. C. Wang, “Fabrication and characterization of GaN-based LEDs grown on chemical wet-etched patterned sapphire substrates,” J. Electrochem. Soc.153(12), G1106–G1111 (2006). [CrossRef]
  8. Y. J. Lee, H. C. Kuo, T. C. Lu, S. C. Wang, K. W. Ng, K. M. Lau, Z. P. Yang, A. Chang, and S. Y. Lin, “Study of GaN-based light-emitting diodes grown on chemical wet-etching-patterned sapphire substrate with V-shaped pits roughening surfaces,” J. Lightwave Technol.26(11), 1455–1463 (2008). [CrossRef]
  9. J. J. Chen, Y. K. Su, C. L. Lin, S. M. Chen, W. L. Li, and C. C. Kao, “Enhanced output power of GaN-based LEDs with nano-patterned sapphire substrates,” IEEE Photon. Technol. Lett.20(13), 1193–1195 (2008). [CrossRef]
  10. T. S. Oh, Y. S. Lee, H. Jeong, J. D. Kim, T. H. Seo, and E. K. Suh, “Characteristics of GaN-based light emitting diode grown on circular convex patterned sapphire substrate,” Phys. Status Solidi., C Curr. Top. Solid State Phys.6(2), 589–592 (2009). [CrossRef]
  11. J. H. Lee, D. Y. Lee, B. W. Oh, and J. H. Lee, “Comparison of InGaN-Based LEDs Grown on Conventional Sapphire and Cone-Shape-Patterned Sapphire Substrate,” IEEE Trans. Electron. Dev.57(1), 157–163 (2010). [CrossRef]
  12. Y. F. Li, S. You, M. W. Zhu, L. Zhao, W. T. Hou, T. Detchprohm, Y. Taniguchi, N. Tamura, S. Tanaka, and C. Wetzel, “Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire,” Appl. Phys. Lett.98(15), 151102 (2011). [CrossRef]
  13. H. Kim, K. K. Choi, K. K. Kim, J. Cho, S. N. Lee, Y. Park, J. S. Kwak, and T. Y. Seong, “Light-extraction enhancement of vertical-injection GaN-based light-emitting diodes fabricated with highly integrated surface textures,” Opt. Lett.33(11), 1273–1275 (2008). [CrossRef] [PubMed]
  14. B. Sun, L. X. Zhao, T. B. Wei, X. Y. Yi, Z. Q. Liu, G. H. Wang, J. M. Li, and F. T. Yi, “Light extraction enhancement of bulk GaN light-emitting diode with hemisphere-cones-hybrid surface,” Opt. Express20(17), 18537–18544 (2012). [CrossRef] [PubMed]
  15. Y. H. Jin, F. L. Yang, Q. Q. Li, Z. D. Zhu, J. Zhu, and S. S. Fan, “Enhanced light extraction from a GaN-based green light-emitting diode with hemicylindrical linear grating structure,” Opt. Express20(14), 15818–15825 (2012). [CrossRef] [PubMed]
  16. S. Kim, S. M. Kim, H. H. Park, D. G. Choi, J. W. Jung, J. H. Jeong, and J. R. Jeong, “Conformally direct imprinted inorganic surface corrugation for light extraction enhancement of light emitting diodes,” Opt. Express20(S5Suppl 5), A713–A721 (2012). [CrossRef] [PubMed]
  17. T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett.84(6), 855–857 (2004). [CrossRef]
  18. B. J. Kim, H. Jung, J. Shin, M. A. Mastro, C. R. Eddy, J. K. Hite, S. H. Kim, J. Bang, and J. Kim, “Enhancement of light extraction efficiency of ultraviolet light emitting diodes by patterning of SiO2 nanosphere arrays,” Thin Solid Films517(8), 2742–2744 (2009). [CrossRef]
  19. J. Y. Cho, K. J. Byeon, and H. Lee, “Forming the graded-refractive-index antireflection layers on light-emitting diodes to enhance the light extraction,” Opt. Lett.36(16), 3203–3205 (2011). [CrossRef] [PubMed]
  20. K. M. Chang, C. C. Lang, and C. C. Cheng, “The silicon nitride film formed by ECR-CVD for GaN-based LED passivation,” Phys. Status Solidi, A Appl. Res.188(1), 175–178 (2001). [CrossRef]
  21. X. L. Da, X. Guo, L. M. Dong, Y. P. Song, W. W. Ai, and G. D. Shen, “The silicon oxynitride layer deposited at low temperature for high-brightness GaN-based light-emitting diodes,” Solid-State Electron.50(3), 508–510 (2006). [CrossRef]
  22. G. D. Shen, X. L. Da, X. Guo, Y. X. Zhu, and N. H. Niu, “Effects of the passivation layer deposition temperature on the electrical and optical properties of GaN-based light-emitting diodes,” J. Lumin.127(2), 441–445 (2007). [CrossRef]
  23. Y. K. Su, H. C. Wang, C. L. Lin, W. B. Chen, and S. M. Chen, “Improvement of AlGaInP light emitting diode by sulfide passivation,” IEEE Photon. Technol. Lett.15(10), 1345–1347 (2003). [CrossRef]
  24. S. J. So and C. B. Park, “Improvement of brightness with Al2O3 passivation layers on the surface of InGaN/GaN-based light-emitting diode chips,” Thin Solid Films516(8), 2031–2034 (2008). [CrossRef]
  25. C. H. Lin, C. F. Lai, T. S. Ko, H. W. Huang, H. C. Kuo, Y. Y. Hung, K. M. Leung, C. C. Yu, R. J. Tsai, C. K. Lee, T. C. Lu, and S. C. Wang, “Enhancement of InGaN-GaN indium-tin-oxide flip-chip light-emitting diodes with TiO2-SiO2 multilayer stack omnidirectional reflector,” IEEE Photon. Technol. Lett.18(19), 2050–2052 (2006). [CrossRef]
  26. H. W. Huang, H. C. Kuo, C. F. Lai, C. E. Lee, C. W. Chiu, T. C. Lu, S. C. Wang, C. H. Lin, and K. M. Leung, “High-performance GaN-based vertical-injection light-emitting diodes with TiO2-SiO2 omnidirectional reflector and n-GaN roughness,” IEEE Photon. Technol. Lett.19(8), 565–567 (2007). [CrossRef]
  27. S. J. Chang, C. F. Shen, M. H. Hsieh, C. T. Kuo, T. K. Ko, W. S. Chen, and S. C. Shei, “Nitride-based LEDs with a hybrid Al mirror+TiO2/SiO2 DBR backside reflector,” J. Lightwave Technol.26(17), 3131–3136 (2008). [CrossRef]
  28. N. M. Lin, S. C. Shei, and S. J. Chang, “Nitride-based LEDs with high-reflectance and wide-angle Ag mirror +SiO2/TiO2 DBR backside reflector,” J. Lightwave Technol.29(7), 1033–1038 (2011). [CrossRef]
  29. W. C. Lee, S. J. Wang, K. M. Uang, T. M. Chen, D. M. Kuo, P. R. Wang, and P. H. Wang, “Enhanced light output of vertical-structured GaN-based light-Emitting Diodes with TiO2/SiO2 Reflector and roughened GaOx surface film,” Jpn. J. Appl. Phys.50(4), 04DG06 (2011). [CrossRef]
  30. B. Zhang, Z. S. Zhang, J. Xu, Q. Ren, C. L. Jin, Z. J. Yang, Q. Wang, W. H. Chen, X. D. Hu, T. J. Yu, Z. X. Qin, G. Y. Zhang, D. P. Yu, and B. P. Zhang, “Effects of the artificial Ga-nitride/air periodic nanostructures on current injected GaN-based light emitters,” Phys. Status Solidi C2(7), 2858–2861 (2005). [CrossRef]
  31. R. Sharma, E. D. Haberer, C. Meier, E. L. Hu, and S. Nakamura, “Vertically oriented GaN-based air-gap distributed Bragg reflector structure fabricated using band-gap-selective photoelectrochemical etching,” Appl. Phys. Lett.87(5), 051107 (2005). [CrossRef]
  32. R. Sharma, Y. S. Choi, C. F. Wang, A. David, C. Weisbuch, S. Nakamura, and E. L. Hu, “Gallium-nitride-based microcavity light-emitting diodes with air-gap distributed Bragg reflectors,” Appl. Phys. Lett.91(21), 211108 (2007). [CrossRef]
  33. A. Altoukhov, J. Levrat, E. Feltin, J.-F. Carlin, A. Castiglia, R. Butté, and N. Grandjean, “High reflectivity air-gap distributed Bragg reflectors realized by wet etching of AlInN sacrificial layers,” Appl. Phys. Lett.95(19), 191102 (2009). [CrossRef]
  34. J. H. Ryu, H. Y. Kim, H. K. Kim, Y. S. Katharria, N. Han, J. H. Kang, Y. J. Park, M. Han, B. D. Ryu, K. B. Ko, E. K. Suh, and C. H. Hong, “High performance of InGaN light-emitting diodes by air-gap/GaN distributed Bragg reflectors,” Opt. Express20(9), 9999–10003 (2012). [CrossRef] [PubMed]
  35. T. C. Lu, T. T. Kao, C. C. Kao, J. T. Chu, K. F. Yeh, L. F. Lin, Y. C. Peng, H. W. Huang, H. C. Kuo, and S. C. Wang, “GaN-based high-Q vertical-cavity light-emitting diodes,” IEEE Electron Device Lett.28(10), 884–886 (2007). [CrossRef]
  36. S. Fernández, F. B. Naranjo, F. Calle, M. A. Sánchez-García, E. Calleja, P. Vennegues, A. Trampert, and K. H. Ploog, “High-quality distributed Bragg reflectors based on AlxGa1−xN/GaN multilayers grown by molecular-beam epitaxy,” Appl. Phys. Lett.79(14), 2136 (2001).
  37. D. Byrne, F. Natali, B. Damilano, A. Dussaigne, N. Grandjean, and J. Massies, “Blue resonant cavity light emitting diodes with a high-Al-content GaN/AlGaN distributed Bragg reflector,” Jpn. J. Appl. Phys.42(Part 2, No. 12B), L1509–L1511 (2003). [CrossRef]
  38. H. Liu, H. Zhao, J. Hou, D. Liu, and Y. H. Gao, “Enhanced light extraction in AlInGaN UV light-emitting diodes by an embedded AlN/AlGaN distributed Bragg reflector,” Chin. Phys. Lett.29(10), 108501 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited