OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 18 — Sep. 9, 2013
  • pp: 21500–21507

Polarisation charges and scattering behaviour of realistically rounded plasmonic nanostructures

T. V. Raziman and Olivier J. F. Martin  »View Author Affiliations

Optics Express, Vol. 21, Issue 18, pp. 21500-21507 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1344 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study the effect of realistically rounding nanorod antennae and gap antennae on their far field and near field properties. The simulations show that both scattering behaviour and polarisation charge distribution depend significantly on rounding. Rounding is also seen to have a major effect on coupling between nanostructures. The results suggest that it is important to incorporate the effect of rounding to be able to design plasmonic nanostructures with desired properties.

© 2013 OSA

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

Original Manuscript: July 9, 2013
Revised Manuscript: August 27, 2013
Manuscript Accepted: August 29, 2013
Published: September 5, 2013

T. V. Raziman and Olivier J. F. Martin, "Polarisation charges and scattering behaviour of realistically rounded plasmonic nanostructures," Opt. Express 21, 21500-21507 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  2. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag.14, 302–307 (1966). [CrossRef]
  3. A. Taflove and M. E. Brodwin, “Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell’s equations,” IEEE Trans. Microwave Theory Tech.23, 623–630 (1975). [CrossRef]
  4. P. Monk, Finite Element Methods for Maxwell’s Equations (Oxford University, 2003). [CrossRef]
  5. W.-H. Yang, G. C. Schatz, and R. P. Van Duyne, “Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shapes,” J. Chem. Phys.103, 869–875 (1995). [CrossRef]
  6. O. J. F. Martin and N. B. Piller, “Electromagnetic scattering in polarizable backgrounds,” Phys. Rev. E58, 3909–3915 (1998). [CrossRef]
  7. F. J. García de Abajo and A. Howie, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” Phys. Rev. B65, 115418 (2002). [CrossRef]
  8. U. Hohenester and J. Krenn, “Surface plasmon resonances of single and coupled metallic nanoparticles: A boundary integral method approach,” Phys. Rev. B72,195429 (2005). [CrossRef]
  9. A. M. Kern and O. J. F. Martin, “Surface integral formulation for 3D simulations of plasmonic and high permittivity nanostructures,” J. Opt. Soc. Am.26, 732–740 (2009). [CrossRef]
  10. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev.108, 494–521 (2008). [CrossRef] [PubMed]
  11. X. Lu, M. Rycenga, S. E. Skrabalak, B. Wiley, and Y. Xia, “Chemical synthesis of novel plasmonic nanoparticles,” Annu. Rev. Phys. Chem.60, 167–192 (2009). [CrossRef]
  12. A. M. Kern and O. J. F. Martin, “Excitation and reemission of molecules near realistic plasmonic nanostructures,” Nano Lett.11, 482–487 (2011). [CrossRef] [PubMed]
  13. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1609 (2005). [CrossRef] [PubMed]
  14. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett.101, 047401 (2008). [CrossRef] [PubMed]
  15. N. Verellen, Y. Sonnefraud, H. Sobhani, V. V. Moshchalkov, P. Van Dorpe, P. Norlander, and S. A. Maier, “Fano resonances in coherent plasmonic nanocavities,” Nano Lett.9, 1663–1667 (2009). [CrossRef] [PubMed]
  16. N. Liu, L. Langguth, T. Weiss, J. K¨astel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nature Mater.8, 758–762 (2009). [CrossRef]
  17. R. Fuchs, “Theory of the optical properties of ionic crystal cubes,” Phys. Rev. B11, 1732–1740 (1975). [CrossRef]
  18. M. A. Yurkin and M. Kahnert, “Light scattering by a cube: Accuracy limits of the discrete dipole approximation and the T-matrix method,” J. Quant. Spectrosc. Radiat. Transfer123, 176–183 (2013). [CrossRef]
  19. W. J. Galush, S. A. Shelby, M. J. Mulvihill, A. Tao, P. Yang, and J. T. Groves, “A nanocube plasmonic sensor for molecular binding on membrane surfaces,” Nano Lett.9, 2077–2082 (2009).
  20. L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and L. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett.5, 2034–2038 (2005). [CrossRef] [PubMed]
  21. M. Rycenga, J. M. McLellan, and Y. Xia, “Controlling the assembly of silver nanocubes through selective functionalization of their faces,” Adv. Mater.20, 2416–2420 (2008). [CrossRef]
  22. H. Chen, Z. Sun, W. Ni, K. C. Woo, H.-Q. Lin, L. Sun, C. Yan, and J. Wang, “Plasmon coupling in clusters composed of two-dimensionally ordered gold nanocubes,” Small5, 2111–2119 (2009). [CrossRef] [PubMed]
  23. W. Li, P. H. C. Camargo, X. Lu, and Y. Xia, “Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced Raman scattering,” Nano Lett.9, 485–490 (2009).
  24. M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev.111, 3669–3712 (2011).
  25. N. Grillet, D. Manchon, F. Bertorelle, C. Bonnet, M. Broyer, E. Cottancin, J. Lermé, M. Hillenkamp, and M. Pellarin, “Plasmon coupling in silver nanocube dimers: Resonance splitting induced by edge rounding,” ACS Nano5, 9450–9462 (2011). [CrossRef] [PubMed]
  26. M. B. Cortie, F. Liu, M. D. Arnold, and Y. Niidome, “Multimode resonances in silver nanocuboids,” Langmuir28, 9103–9112 (2012). [CrossRef] [PubMed]
  27. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972). [CrossRef]
  28. A. M. Kern and O. J. F. Martin, “Pitfalls in the determination of optical cross sections from surface integral equation simulations,” IEEE Trans. Antennas Propag.58, 2158–2161 (2010). [CrossRef]
  29. S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Norlander, “Substrate-induced fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett.11, 1657–1663 (2011). [CrossRef] [PubMed]
  30. A. Unger and M. Kreiter, “Analysing the performance of plasmonic resonators for dielectric sensing,” J. Phys. Chem. C113, 12243–12251 (2009). [CrossRef]
  31. A. Lovera, B. Gallinet, P. Norlander, and O. J. F. Martin, “Mechanisms of Fano resonances in coupled plasmonic systems,” ACS Nano7, 4527–4536 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited