OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 18 — Sep. 9, 2013
  • pp: 21530–21541

Predictive control of thermally induced wavefront aberrations

A. Haber, A. Polo, I. Maj, S.F. Pereira, H.P. Urbach, and M. Verhaegen  »View Author Affiliations

Optics Express, Vol. 21, Issue 18, pp. 21530-21541 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3079 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper we experimentally demonstrate the proof of concept for predictive control of thermally induced wavefront aberrations in optical systems. On the basis of the model of thermally induced wavefront aberrations and using only past wavefront measurements, the proposed adaptive optics controller is able to predict and to compensate the future aberrations. Furthermore, the proposed controller is able to correct wavefront aberrations even when some parameters of the prediction model are unknown. The proposed control strategy can be used in high power optical systems, such as optical lithography machines, where the predictive correction of thermally induced wavefront aberrations is a crucial issue.

© 2013 OSA

OCIS Codes
(110.5220) Imaging systems : Photolithography
(220.1000) Optical design and fabrication : Aberration compensation
(350.6830) Other areas of optics : Thermal lensing
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Adaptive Optics

Original Manuscript: July 22, 2013
Manuscript Accepted: August 19, 2013
Published: September 5, 2013

A. Haber, A. Polo, I. Maj, S.F. Pereira, H.P. Urbach, and M. Verhaegen, "Predictive control of thermally induced wavefront aberrations," Opt. Express 21, 21530-21541 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. J. Sheldon, L. V. Knight, and J. M. Thorne, “Laser-induced thermal lens effect: a new theoretical model,” Appl. Opt.21, 1663–1669 (1982). [CrossRef] [PubMed]
  2. P. Hello and J.-Y. Vinet, “Analytical models of transient thermoelastic deformations of mirrors heated by high power cw laser beams,” J. Phys. France51, 2243–2261 (1990). [CrossRef]
  3. R. Lawrence, D. Ottaway, M. Zucker, and P. Fritschel, “Active correction of thermal lensing through external radiative thermal actuation,” Opt. Lett.29, 2635–2637 (2004). [CrossRef] [PubMed]
  4. M. Kasprzack, B. Canuel, F. Cavalier, R. Day, E. Genin, J. Marque, D. Sentenac, and G. Vajente, “Performance of a thermally deformable mirror for correction of low-order aberrations in laser beams,” Appl. Opt.52, 2909–2916 (2013). [CrossRef] [PubMed]
  5. B. Canuel, R. Day, E. Genin, P. La Penna, and J. Marque, “Wavefront aberration compensation with a thermally deformable mirror,” Classical Quant. Grav.29, 085012 (2012). [CrossRef]
  6. S. Piehler, C. Thiel, A. Voss, M. Abdou Ahmed, and T. Graf, “Self-compensation of thermal lensing in optics for high-brightness solid-state lasers,” Proc. SPIE8239, 82390Z–82390Z–9 (2012). [CrossRef]
  7. H. Haferkamp and D. Seebaum, “Beam delivery by adaptive optics for material processing applications using high-power co2 lasers,” Proc. SPIE2207, 156–164 (1994). [CrossRef]
  8. J. Bekaert, L. Van Look, G. Vandenberghe, P. Van Adrichem, M. Maslow, J.-W. Gemmink, H. Cao, S. Hunsche, J. Neumann, and A. Wolf, “Characterization and control of dynamic lens heating effects under high volume manufacturing conditions,” Proc. SPIE7973, Optical Microlithography XXIV, 79730V–79730V (2011). [CrossRef]
  9. D. H. Beak, J. P. Choi, T. Park, Y. S. Nam, Y. S. Kang, C.-H. Park, K.-Y. Park, C.-H. Ryu, W. Huang, and K.-H. Baik, “Lens heating impact analysis and controls for critical device layers by computational method,” Proc. SPIE8683, Optical Microlithography XXVI, 86831Q–86831Q–8 (2013). [CrossRef]
  10. S. Halle, M. Crouse, A. Jiang, Y. van Dommelen, T. Brunner, B. Minghetti, M. Colburn, and Y. Zhang, “Lens heating challenges for negative tone develop layers with freeform illumination: a comparative study of experimental vs. simulated results,” Proc. SPIE8326, 832607–832607–19 (2012). [CrossRef]
  11. C. Bikcora, M. Van Veelen, S. Weiland, and W. Coene, “Lens heating induced aberration prediction via nonlinear kalman filters,” IEEE Trans. Semicond. Manuf.25, 384–393 (2012). [CrossRef]
  12. F. Staals, A. Andryzhyieuskaya, H. Bakker, M. Beems, J. Finders, T. Hollink, J. Mulkens, A. Nachtwein, R. Willekers, P. Engblom, T. Grunner, and Y. Zhang, “Advanced wavefront engineering for improved imaging and overlay applications on a 1.35 na immersion scanner,” Proc. SPIE7973, 79731G–79731G-13 (2011). [CrossRef]
  13. K. Liu, Y. Li, F. Zhang, and M. Fan, “Transient thermal and structural deformation and its impact on optical performance of projection optics for extreme ultraviolet lithography,” Jpn. J. Appl. Phys46, 6568–6572 (2007). [CrossRef]
  14. Y. Li, K. Ota, and K. Murakami, “Thermal and structural deformation and its impact on optical performance of projection optics for extreme ultraviolet lithography,” J. Vac. Sci. Tech. B21, 127–129 (2003). [CrossRef]
  15. P. A. Spence, S. E. Gianoulakis, C. D. Moen, M. Kanouff, A. Fisher, and A. K. Ray-Chaudhuri, “System performance modeling of extreme ultraviolet lithographic thermal issues,” J. Vac. Sci. Tech. B17, 3034–3038 (1999). [CrossRef]
  16. H. Lück, K.-O. Müller, P. Aufmuth, and K. Danzmann, “Correction of wavefront distortions by means of thermally adaptive optics,” Opt. Commun.175, 275–287 (2000). [CrossRef]
  17. M. A. Arain, W. Z. Korth, L. F. Williams, R. M. Martin, G. Mueller, D. B. Tanner, and D. Reitze, “Adaptive control of modal properties of optical beams using photothermal effects,” Opt. Express18, 2767–2781 (2010). [CrossRef] [PubMed]
  18. S. Ravensbergen, P. Rosielle, and M. Steinbuch, “Deformable mirrors with thermomechanical actuators for extreme ultraviolet lithography: Design, realization and validation,” Precis. Eng.37, 353–363 (2013). [CrossRef]
  19. S. Ravensbergen, “Adaptive optics for extreme ultraviolet lithography : actuator design and validation for deformable mirror concepts,” Ph.D. thesis, Technische Universiteit Eindhoven (2012).
  20. F. Roddier, Adaptive optics in astronomy (Cambridge University Press, 1999). [CrossRef]
  21. R. Tyson, Principles of Adaptive Optics, Third Edition, Series in Optics and Optoelectronics Series (CRC Press-INC, 2010). [CrossRef]
  22. C. Mack, Fundamental Principles of Optical Lithography: The Science of Microfabrication (Wiley, 2008).
  23. W. Nowacki, Dynamic Problems of Thermoelasticity (Springer, 1975).
  24. M. Verhaegen and V. Verdult, Filtering and System Identification: A Least Squares Approach (Cambridge University Press, 2007). [CrossRef]
  25. Adaptica Srl, “Saturn user manual,” http://www.adaptica.com/site/en/pages/saturn .
  26. A. Haber, A. Polo, S. K. Ravensbergen, H. P. Urbach, and M. Verhaegen, “Identification of a dynamical model of a thermally actuated deformable mirror,” Opt. Lett.38, 3061–3064 (2013). [CrossRef]
  27. D. Malacara, Optical shop testing (Wiley-Interscience, 2007). [CrossRef]
  28. E. Fernandez and P. Artal, “Membrane deformable mirror for adaptive optics: performance limits in visual optics.” Opt. Express11, 1056–1069 (2003). [CrossRef] [PubMed]
  29. S. Bonora and L. Poletto, “Push-pull membrane mirrors for adaptive optics.” Opt. Express14, 11935–11944 (2006). [CrossRef] [PubMed]
  30. A. Polo, A. Haber, S. F. Pereira, M. Verhaegen, and H. P. Urbach, “An innovative and efficient method to control the shape of push-pull membrane deformable mirror,” Opt. Express20, 27922–27932 (2012). [CrossRef] [PubMed]
  31. A. Haber, A. Polo, C. S. Smith, S. F. Pereira, P. Urbach, and M. Verhaegen, “Iterative learning control of a membrane deformable mirror for optimal wavefront correction,” Appl. Opt.52, 2363–2373 (2013). [CrossRef] [PubMed]
  32. M. Phan, R. Lim, and R. Longman, “Unifying Input-Output and State-Space Perspectives of Predictive Control,” Princeton University, Department of Mechanical and Aerospace Engineering Technical Report No. 3044 (1998).
  33. A. Haber and M. Verhaegen, “Moving horizon estimation for large-scale interconnected systems,” in press, IEEE Trans. Autom. Control (2013). [CrossRef]
  34. G. Vdovin and M. Loktev, “Deformable mirror with thermal actuators,” Opt. Lett.27, 677–679 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited