OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 18 — Sep. 9, 2013
  • pp: 21569–21578

Phase noise tolerant inter-carrier-interference cancellation for WDM superchannels with sub-Nyquist channel spacing

Shuchang Yao, Songnian Fu, Jianqiang Li, Ming Tang, Perry Shum, and Deming Liu  »View Author Affiliations


Optics Express, Vol. 21, Issue 18, pp. 21569-21578 (2013)
http://dx.doi.org/10.1364/OE.21.021569


View Full Text Article

Enhanced HTML    Acrobat PDF (991 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose and demonstrate a novel multi-input multi-output (MIMO) equalization based inter-carrier-interference (ICI) cancellation approach employing constant modulus algorithm (CMA) for supperchanels with sub-Nyquist channel spacing, where optical combs are used as optical sources. Compared with the least mean square (LMS) algorithm based ICI canceller, the proposed approach has comparable capability to accomplish the ICI mitigation for 56 Gbaud dual-polarization quadrature phase shift keying (DP-QPSK) signals with tight channel spacing till 50 GHz. In particular, compared with the LMS-MIMO based ICI canceller, the optical linewidth tolerance of 6 MHz is relaxed to 20 MHz given a 1dB required optical signal-to-noise ratio (OSNR) penalty for the CMA-MIMO based ICI canceller. Meanwhile, the CMA-MIMO based ICI canceller is ideal for real-time processing, since the number of parallel processing pipelines can be greater than 240 even in the presence of large linewidth.

© 2013 OSA

OCIS Codes
(060.1660) Fiber optics and optical communications : Coherent communications
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.4510) Fiber optics and optical communications : Optical communications

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: May 22, 2013
Revised Manuscript: August 17, 2013
Manuscript Accepted: August 27, 2013
Published: September 6, 2013

Citation
Shuchang Yao, Songnian Fu, Jianqiang Li, Ming Tang, Perry Shum, and Deming Liu, "Phase noise tolerant inter-carrier-interference cancellation for WDM superchannels with sub-Nyquist channel spacing," Opt. Express 21, 21569-21578 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-18-21569


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Buchali, K. Schuh, L. Schmalen, W. Idler, E. Lach, and A. Leven, “1-Tbit/s dual-carrier DP 64QAM transmission at 64Gbaud with 40% overhead soft-FEC over 320km SSMF,” in Proceedings of OFC (Anaheim, California, 2013), paper OTh4E.3. [CrossRef]
  2. G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri, “On the Performance of Nyquist-WDM Terabit Superchannels Based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM Subcarriers,” J. Lightwave Technol.29(1), 53–61 (2011). [CrossRef]
  3. D. Qian, M. F. Huang, E. Ip, Y. K. Huang, Y. Shao, J. Hu, and T. Wang, “High capacity/spectral Efficiency 101.7-Tb/s WDM transmission using PDM-128QAM-OFDM over 165-km SSMF within C- and L-Bands,” J. Lightwave Technol.30(10), 1540–1548 (2012). [CrossRef]
  4. O. H. A. Jan, D. Sandel, K. Puntsri, A. Al-Bermani, M. El-Darawy, and R. Noé, “The robustness of subcarrier-index modulation in 16-QAM CO-OFDM system with 1024-point FFT,” Opt. Express20(27), 28963–28968 (2012). [CrossRef] [PubMed]
  5. X. Zhou, L. E. Nelson, P. Magill, R. Isaac, B. Zhu, D. W. Peckham, P. I. Borel, and K. Carlson, “PDM-Nyquist-32QAM for 450-Gb/s Per-Channel WDM Transmission on the 50 GHz ITU-T Grid,” J. Lightwave Technol.30(4), 553–559 (2012). [CrossRef]
  6. G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance Limits of Nyquist-WDM and CO-OFDM in High-Speed PM-QPSK systems,” IEEE Photon. Technol. Lett.22(15), 1129–1131 (2010). [CrossRef]
  7. J. Li, M. Karlsson, P. A. Andrekson, and K. Xu, “Transmission of 1.936 Tb/s (11 × 176 Gb/s) DP-16QAM superchannel signals over 640 km SSMF with EDFA only and 300 GHz WSS channel,” Opt. Express20(26), B223–B231 (2012). [CrossRef] [PubMed]
  8. J.-X. Cai, C. R. Davidson, A. Lucero, H. Zhang, D. G. Foursa, O. V. Sinkin, W. W. Patterson, A. N. Pilipetskii, G. Mohs, and N. S. Bergano, “20 Tbit/s transmission over 6860 km with sub-Nyquist channel spacing,” J. Lightwave Technol.30(4), 651–657 (2012). [CrossRef]
  9. Z. Jia, J. Yu, H. C. Chien, Z. Dong, and D. D. Huo, “Field Transmission of 100 G and Beyond: Multiple Baud Rates and Mixed Line Rates Using Nyquist-WDM Technology,” J. Lightwave Technol.30(24), 3793–3804 (2012). [CrossRef]
  10. J. Pan, C. Liu, T. F. Detwiler, A. J. Stark, Y. Hsueh, and S. E. Ralph, “Inter-channel crosstalk cancellation for Nyquist-WDM Superchannel applications,” J. Lightwave Technol.30(24), 3993–3999 (2012). [CrossRef]
  11. C. Liu, J. Pan, T. Detwiler, A. Stark, Y. T. Hsueh, G. K. Chang, and S. E. Ralph, “Joint digital signal processing for superchannel coherent optical communication systems,” Opt. Express21(7), 8342–8356 (2013). [CrossRef] [PubMed]
  12. C. Liu, J. Pan, T. Detwiler, A. Stark, Y. Hsueh, G. Chang, and S. E. Ralph, “Joint Digital Signal Processing for Superchannel Coherent Optical Systems: Joint CD Compensation for Joint ICI Cancellation,” in Proceedings of ECOC (Amsterdam, The Netherlands, 2012), paper Th.1.A.4. [CrossRef]
  13. C. Liu, J. Pan, T. Detwiler, A. Stark, Y. Hsueh, G. Chang, and S. E. Ralph, “Joint ICI Cancellation based on Adaptive Cross-Channel Linear Equalizer for Coherent Optical Superchannel Systems,” in Proceedings of Advanced Photonics Congress (Colorado Springs, Colorado, 2012), paper SpTu3A.2. [CrossRef]
  14. T. J. Pinkert, E. J. Salumbides, M. S. Tahvili, W. Ubachs, E. A. J. M. Bente, and K. S. E. Eikema, “Frequency comb generation by CW laser injection into a quantum-dot mode-locked laser,” Opt. Express20(19), 21357–21371 (2012). [CrossRef] [PubMed]
  15. Y. Ma, Q. Yang, Y. Tang, S. Chen, and W. Shieh, “1-Tb/s single-channel coherent optical OFDM transmission over 600-km SSMF fiber with subwavelength bandwidth access,” Opt. Express17(11), 9421–9427 (2009). [CrossRef] [PubMed]
  16. M. A. Foster, J. S. Levy, O. Kuzucu, K. Saha, M. Lipson, and A. L. Gaeta, “Silicon-based monolithic optical frequency comb source,” Opt. Express19(15), 14233–14239 (2011). [CrossRef] [PubMed]
  17. S. Bennett, B. Cai, E. Burr, O. Gough, and A. J. Seeds, “1.8-THz bandwidth, zero-frequency error, tunable optical comb generator for DWDM applications,” IEEE Photon. Technol. Lett.11(5), 551–553 (1999). [CrossRef]
  18. L. B. Du, J. Schroeder, J. Carpenter, B. Eggleton, and A. J. Lowery, “Flexible All-Optical OFDM using WSSs,” in Proceedings of OFC (Anaheim, California, 2013), paper PDP5B.9.
  19. I. Fatadin, S. J. Savory, and D. Ives, “Compensation of quadrature imbalance in an optical QPSK coherent receiver,” IEEE Photon. Technol. Lett.20(20), 1733–1735 (2008). [CrossRef]
  20. M. Selmi, Y. Jaouen, and P. Ciblat, “Accurate digital frequency offset estimator for coherent PolMux QAM transmission systems,” in Proceedings of ECOC (Vienna, Austria, 2009),paper P3.08.
  21. A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory29(4), 543–551 (1983). [CrossRef]
  22. J. Li and Z. Li, “Frequency-locked multicarrier generator based on a complementary frequency shifter with double recirculating frequency-shifting loops,” Opt. Lett.38(3), 359–361 (2013). [CrossRef] [PubMed]
  23. T. Zeng, “Superchannel transmission system based on multi-channel equalization,” Opt. Express21(12), 14799–14807 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited