OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 18 — Sep. 9, 2013
  • pp: 21587–21595

Integrated nonlinear Mach Zehnder for 40 Gbit/s all-optical switching

C. Lacava, M. J. Strain, P. Minzioni, I. Cristiani, and M. Sorel  »View Author Affiliations


Optics Express, Vol. 21, Issue 18, pp. 21587-21595 (2013)
http://dx.doi.org/10.1364/OE.21.021587


View Full Text Article

Enhanced HTML    Acrobat PDF (4136 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the experimental demonstration of a novel silicon based fully integrated nonlinear Mach Zehnder device. A standard silicon waveguide is used as a nonlinear arm, conversely a large mode SU-8 waveguide acts as a purely linear arm. Given this asymmetry, an intensity dependent phase shift can be introduced between the two interferometric arms. Thanks to a fine tuning of the silicon arm optical properties, a low power, ultrafast, picosecond operation is demonstrated, allowing the use of this device for ultrafast all-optical signal processing in high density communication networks.

© 2013 OSA

OCIS Codes
(190.4360) Nonlinear optics : Nonlinear optics, devices
(130.4815) Integrated optics : Optical switching devices

ToC Category:
Integrated Optics

History
Original Manuscript: June 4, 2013
Revised Manuscript: June 26, 2013
Manuscript Accepted: July 1, 2013
Published: September 6, 2013

Citation
C. Lacava, M. J. Strain, P. Minzioni, I. Cristiani, and M. Sorel, "Integrated nonlinear Mach Zehnder for 40 Gbit/s all-optical switching," Opt. Express 21, 21587-21595 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-18-21587


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett.82(18), 2954–2956 (2003). [CrossRef]
  2. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature431(7012), 1081–1084 (2004). [CrossRef] [PubMed]
  3. H. Rong, Y. H. Kuo, A. Liu, M. Paniccia, and O. Cohen, “High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides,” Opt. Express14(3), 1182–1188 (2006). [CrossRef] [PubMed]
  4. F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorel, and A. Melloni, “Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion,” Nat Commun2, 296 (2011). [CrossRef] [PubMed]
  5. L. R. Nunes, T. K. Liang, H. K. Tsang, M. Tsuchiya, D. Van Thourhout, P. Dumon, and R. Baets, “Ultrafast non-inverting wavelength conversion by cross-absorption modulation in silicon wire waveguides,” in Proceeding of IEEE Conference on Group IV Photonics (Institute of Electrical and Electronic Engineers New York, 2005), pp. 154–156. [CrossRef]
  6. W. Astar, J. B. Driscoll, X. P. Liu, J. I. Dadap, W. M. J. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood, “All-optical format conversion of NRZ-OOK to RZ-OOK in a silicon nanowire utilizing either XPM or FWM and resulting in a receiver sensitivity gain of 2.5 dB,” IEEE J. Sel. Top. Quantum Electron.16(1), 234–249 (2010). [CrossRef]
  7. D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high- speed digital information processing,” Science286(5444), 1523–1528 (1999). [CrossRef] [PubMed]
  8. J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photon. Technol. Lett.5(7), 787–790 (1993). [CrossRef]
  9. K. J. Blow, N. J. Doran, and B. P. Nelson, “Demonstration of the nonlinear fibre loop mirror as an ultrafast all-optical demultiplexer,” IEEE Electron. Lett.26(14), 962–964 (1990). [CrossRef]
  10. I. Glesk, P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, and S. Janz, “All-optical switching using nonlinear subwavelength mach-zehnder on silicon,” Opt. Express19(15), 14031–14039 (2011). [CrossRef] [PubMed]
  11. I. Glesk, P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, and S. Janz, “Picosecond all-optical switching using nonlinear Mach-Zehnder with silicon subwavelength grating and photonic wire arms,” Opt. Quantum Electron.44(12-13), 613–621 (2012). [CrossRef]
  12. T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to single mode fibres,” IEEE Electron. Lett.38(25), 1669–1670 (2002). [CrossRef]
  13. Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express15(25), 16604–16644 (2007). [CrossRef] [PubMed]
  14. I. D. Rukhlenko, M. Premaratne, and G. P. Agrawal, “Nonlinear silicon photonics: analytical tools,” IEEE J. Sel. Top. Quantum Electron.16(1), 200–215 (2010). [CrossRef]
  15. C. Dorrer and D. N. Maywar, “RF spectrum analysis of optical signals using nonlinear optics,” J. Lightwave Technol.22(1), 266–274 (2004). [CrossRef]
  16. L. Shen, N. Healy, P. Mehta, T. D. Day, J. R. Sparks, J. V. Badding, and A. C. Peacock, “Nonlinear transmission properties of hydrogenated amorphous silicon core fibers towards the mid-infrared regime,” Opt. Express21(11), 13075–13083 (2013). [CrossRef] [PubMed]
  17. B. Kuyken, H. Ji, S. Clemmen, S. K. Selvaraja, H. Hu, M. Pu, M. Galili, P. Jeppesen, G. Morthier, S. Massar, L. K. Oxenløwe, G. Roelkens, and R. Baets, “Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides,” Opt. Express19(26), B146–B153 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited