OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 18 — Sep. 9, 2013
  • pp: 21596–21606

Optical temperature sensing of NaYbF4: Tm3+ @ SiO2 core-shell micro-particles induced by infrared excitation

Xiangfu Wang, Jin Zheng, Yan Xuan, and Xiaohong Yan  »View Author Affiliations


Optics Express, Vol. 21, Issue 18, pp. 21596-21606 (2013)
http://dx.doi.org/10.1364/OE.21.021596


View Full Text Article

Enhanced HTML    Acrobat PDF (1888 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

NaYbF4:Tm3+@SiO2 core-shell micro-particles were synthesized by a hydrothermal method and subsequent ultrasonic coating process. Optical temperature sensing has been observed in NaYbF4: Tm3+@SiO2 core-shell micro-particles with a 980 nm infrared laser as excitation source. The fluorescence intensity ratios, optical temperature sensitivity, and temperature dependent population re-distribution ability from the thermally coupled 1D2 /1G4 and 3F2 /3H4 levels of the Tm3+ ion have been analyzed as a function of temperature in the range of 100~700 K in order to check its availability as a optical temperature sensor. A better behavior as a low-temperature sensor has been obtained with a minimum sensitivity of 5.4 × 10−4 K−1 at 430 K. It exhibits temperature induced population re-distribution from 1D2 /1G4 thermally coupled levels at higher temperature range.

© 2013 OSA

OCIS Codes
(160.5690) Materials : Rare-earth-doped materials
(300.2530) Spectroscopy : Fluorescence, laser-induced
(160.4236) Materials : Nanomaterials
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Sensors

History
Original Manuscript: June 17, 2013
Revised Manuscript: August 10, 2013
Manuscript Accepted: August 12, 2013
Published: September 6, 2013

Citation
Xiangfu Wang, Jin Zheng, Yan Xuan, and Xiaohong Yan, "Optical temperature sensing of NaYbF4: Tm3+ @ SiO2 core-shell micro-particles induced by infrared excitation," Opt. Express 21, 21596-21606 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-18-21596


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. T. Tu, L. Q. Liu, Q. Ju, Y. S. Liu, H. M. Zhu, R. F. Li, and X. Y. Chen, “Time-resolved FRET biosensor based on amine-functionalized lanthanide-doped NaYF4 nanocrystals,” Angew. Chem. Int. Ed. Engl.50(28), 6306–6310 (2011). [CrossRef] [PubMed]
  2. F. Zhang, G.B. Braun, A. Pallaoro, Y.C. Zhang, Y.G. Shi, D.X. Cui, M. Moskovits, D.Y. Zhao, and G.D. Stucky, “Mesoporous multifunctional upconversion luminescent and magnetic “nanorattle” materials for targeted chemotherapy,” Nano Lett.12(1), 61–67 (2012).
  3. F. Lahoz, C. P. Rodríguez, S. E. Hernández, I. R. Martín, V. Lavín, and U. R. R. Mendoza, “Upconversion mechanisms in rare-earth doped glasses to improve the efficiency of silicon solar cells,” Sol. Energy Mater. Sol. Cells95(7), 1671–1677 (2011). [CrossRef]
  4. H. S. Jang, K. Woo, and K. Lim, “Bright dual-mode green emission from selective set of dopant ions in β-Na(Y,Gd)F4: Yb,Er/β-NaGdF4:Ce,Tb core/shell nanocrystals,” Opt. Express20(15), 17107–17118 (2012). [CrossRef]
  5. X. F. Wang, X. H. Yan, Y. Y. Bu, J. Zhen, and Y. Xuan, “Fabrication, photoluminescence, and potential application in white light emitting diode of Dy3+–Tm3+ doped transparent glass ceramics containing GdSr2F7 nanocrystals,” Appl. Phys., A Mater. Sci. Process.112(2), 317–322 (2013). [CrossRef]
  6. R. Scheps, “Upconversion laser processes,” Prog. Quantum Electron.20(4), 271–358 (1996). [CrossRef]
  7. Y. S. Liu, D. T. Tu, H. M. Zhu, R. F. Li, W. Q. Luo, and X. Y. Chen, “A strategy to achieve efficient dual-mode luminescence of Eu(3+) in lanthanides doped multifunctional NaGdF4 nanocrystals,” Adv. Mater.22(30), 3266–3271 (2010). [CrossRef] [PubMed]
  8. F. Vetrone, R. Naccache, V. Mahalingam, C. G. Morgan, and J. A. Capobianco, “The active-core/active-shell approach: a strategy to enhance the upconversion luminescence in lanthanide-doped nanoparticles,” Adv. Funct. Mater.19(18), 2924–2929 (2009).
  9. F. Wang, R. R. Deng, J. Wang, Q. X. Wang, Y. Han, H. M. Zhu, X. Y. Chen, and X. G. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater.10(12), 968–973 (2011). [CrossRef] [PubMed]
  10. G. Y. Chen, J. Shen, T. Y. Ohulchanskyy, N. J. Patel, A. Kutikov, Z. Li, J. Song, R. K. Pandey, H. Agren, P. N. Prasad, and G. Han, “(α-NaYbF4:Tm3+)/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging,” ACS Nano6(9), 8280–8287 (2012). [CrossRef] [PubMed]
  11. W. Xu, X. Y. Gao, L. J. Zheng, Z. G. Zhang, and W. W. Cao, “An optical temperature sensor based on the upconversion luminescence from Tm3+/Yb3+ codoped oxyfluoride glass ceramic,” Sens. Actuators B Chem.173, 250–253 (2012). [CrossRef]
  12. S. F. León-Luis, U. R. Rodríguez-Mendoza, E. Lalla, and V. Lavín, “Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass,” Sens. Actuators B Chem.158(1), 208–213 (2011). [CrossRef]
  13. N. Rakov and G. S. Maciel, “Three-photon upconversion and optical thermometry characterization of Er3+:Yb3+ co-doped yttrium silicate powders,” Sens. Actuators B Chem.164(1), 96–100 (2012). [CrossRef]
  14. P. V. dos Santos, M. T. de Araujo, A. S. Gouveia-Neto, J. A. Medeiros Neto, and A. S. B. Sombra, “Optical temperature sensing using upconversion fluorescence emission in Er3+/Yb3+-codoped chalcogenide glass,” Appl. Phys. Lett.73(5), 578–580 (1998). [CrossRef]
  15. W. Xu, H. Zhao, Z. G. Zhang, and W. W. Cao, “Highly sensitive optical thermometry through thermally enhanced near infrared emissions from Nd3+/Yb3+ codoped oxyfluoride glass ceramic,” Sens. Actuators B Chem.178, 520–524 (2013). [CrossRef]
  16. C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of Anti-Stokes Fluorescence Cooling in Thulium-Doped Glass,” Phys. Rev. Lett.85(17), 3600–3603 (2000). [CrossRef] [PubMed]
  17. Z. Boruc, M. Kaczkan, B. Fetlinski, S. Turczynski, and M. Malinowski, “Blue emissions in Dy3+ doped Y4Al2O9 crystals for temperature sensing,” Opt. Lett.37(24), 5214–5216 (2012). [CrossRef] [PubMed]
  18. J. Fernandez, A. J. Garcia-Adeva, and R. Balda, “Anti-Stokes Laser Cooling in Bulk Erbium-Doped Materials,” Phys. Rev. Lett.97(3), 033001 (2006). [CrossRef] [PubMed]
  19. S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys.94(8), 4743–4756 (2003). [CrossRef]
  20. M. Quintanilla, E. Cantelar, F. Cussó, M. Villegas, and A. C. Caballero, “Temperature Sensing with Up-Converting Submicron-Sized LiNbO3:Er3+/Yb3+ Particles,” Appl. Phys. Express4(2), 022601 (2011). [CrossRef]
  21. C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale4(16), 4799–4829 (2012). [CrossRef] [PubMed]
  22. D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale4(15), 4301–4326 (2012). [CrossRef] [PubMed]
  23. L. M. Maestro, C. Jacinto, U. R. Silva, F. Vetrone, J. A. Capobianco, D. Jaque, and J. G. Solé, “Response to“Critical Growth Temperature of Aqueous CdTe Quantum Dots is Non-negligible for their Application as Nanothermometers,” Samll DOI: (2013) [CrossRef]
  24. L. M. Maestro, C. Jacinto, U. R. Silva, F. Vetrone, J. A. Capobianco, D. Jaque, and J. G. Solé, “CdTe Quantum Dots as Nanothermometers: Towards Highly Sensitive Thermal Imaging,” Small7(13), 1774–1778 (2011). [CrossRef] [PubMed]
  25. L. Aigouy, G. Tessier, M. Mortier, and B. Charlot, “Scanning thermal imaging of microelectronic circuits with a fluorescent nanoprobe,” Appl. Phys. Lett.87(18), 184105 (2005). [CrossRef]
  26. F. van De Rijke, H. Zijlmans, S. Li, T. Vail, A. K. Raap, R. S. Niedbala, and H. J. Tanke, “Up-converting phosphor reporters for nucleic acid microarrays,” Nat. Biotechnol.19(3), 273–276 (2001). [CrossRef] [PubMed]
  27. L. Y. Pan, M. He, J. B. Ma, W. Tang, G. Gao, R. He, H. C. Su, and D. X. Cui, “Phase and Size Controllable Synthesis of NaYbF4 Nanocrystals in Oleic Acid/Ionic Liquid Two-Phase System for Targeted Fluorescent Imaging of Gastric Cancer,” Theranostics3(3), 210–222 (2013). [CrossRef] [PubMed]
  28. M. Wang, C. C. Mi, Y. X. Zhang, J. L. Liu, F. Li, C. B. Mao, and S. K. Xu, “NIR-Responsive Silica-Coated NaYbF4:Er/Tm/Ho Upconversion Fluorescent Nanoparticles with Tunable Emission Colors and Their Applications in Immunolabeling and Fluorescent Imaging of Cancer Cells,” J. Phys. Chem. C113(44), 19021–19027 (2009). [CrossRef]
  29. J. F. Suyver, J. Grimm, M. K. Veen, D. Biner, K. W. Kramer, and H. U. Gudel, “Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+,” J. Lumin.117(1), 1–12 (2006). [CrossRef]
  30. M. J. Weber, “Radiative and Multiphonon Relaxation of Rare-Earth Ions in Y2O3,” Phys. Rev.171(2), 283–291 (1968). [CrossRef]
  31. M. J. Weber, D. C. Ziegler, and C. A. Angell, “Tailoring stimulated emission cross sections of Nd3+ laser glass: Observation of large cross sections for BiCl3 glasses,” J. Appl. Phys.53(6), 4344–4350 (1982). [CrossRef]
  32. G. De, W. P. Qin, J. S. Zhang, J. S. Zhang, Y. Wang, C. Y. Cao, and Y. Cui, “Infrared-to-ultraviolet up-conversion luminescence of YF3:Yb3+, Tm3+ microsheets,” J. Lumin.122–123, 128–130 (2007). [CrossRef]
  33. G. F. Wang, W. P. Qin, L. L. Wang, G. D. Wei, P. F. Zhu, and R. Kim, “Intense ultraviolet upconversion luminescence from hexagonal NaYF4:Yb3+/Tm3+ microcrystals,” Opt. Express16(16), 11907–11914 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited