OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 18 — Sep. 9, 2013
  • pp: 21607–21617

Probe-sample optical interaction: size and wavelength dependence in localized plasmon near-field imaging

Terefe G. Habteyes, Scott Dhuey, Karissa I. Kiesow, and Alexander Vold  »View Author Affiliations


Optics Express, Vol. 21, Issue 18, pp. 21607-21617 (2013)
http://dx.doi.org/10.1364/OE.21.021607


View Full Text Article

Enhanced HTML    Acrobat PDF (1461 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The probe-sample optical interaction in apertureless near-field optical microscopy is studied at 633 nm and 808 nm excitation wavelengths using gold nanodisks as model systems. The near-field distributions of the dipolar and quadrupolar surface plasmon modes have been mapped successfully using metal coated probes with different polarization combinations of excitation and detection except when the incident and the scattered light polarizations are chosen to be parallel to the probe axis. For the parallel polarization of the incident and the scattered light, the pattern of the near-field distribution differs from the inherent plasmon mode structures of the sample, depending sensitively on the sample size and excitation energy. For a given excitation energy, the near-field amplitude shifts from one pole to the other as the sample size increases, having nearly equal amplitude at the two poles when the plasmon resonance peak spectrally overlaps with the excitation energy.

© 2013 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(180.4243) Microscopy : Near-field microscopy

ToC Category:
Microscopy

History
Original Manuscript: June 17, 2013
Revised Manuscript: August 23, 2013
Manuscript Accepted: September 2, 2013
Published: September 6, 2013

Citation
Terefe G. Habteyes, Scott Dhuey, Karissa I. Kiesow, and Alexander Vold, "Probe-sample optical interaction: size and wavelength dependence in localized plasmon near-field imaging," Opt. Express 21, 21607-21617 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-18-21607


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Courjon, Near Field Microscopy and Near Field Optics (Imperial College Press, 2003).
  2. L. Novotny and B. Hecht, Principles of Nano-optics (Cambridge University Press, 2006).
  3. Y. Inouye and S. Kawata, “Near-field scanning optical microscope with a metallic probe tip,” Opt. Lett.19(3), 159–161 (1994). [CrossRef] [PubMed]
  4. F. Zenhausern, M. P. Oboyle, and H. K. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett.65(13), 1623–1625 (1994). [CrossRef]
  5. B. Knoll and F. Keilmann, “Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy,” Opt. Commun.182(4-6), 321–328 (2000). [CrossRef]
  6. R. Hillenbrand, B. Knoll, and F. Keilmann, “Pure optical contrast in scattering-type scanning near-field microscopy, ” J. Microsc.202, 77–83 (2001).
  7. Z. H. Kim, B. Liu, and S. R. Leone, “Nanometer-scale optical imaging of epitaxially grown GaN and InN islands using apertureless near-field microscopy,” J. Phys. Chem. B109(17), 8503–8508 (2005). [CrossRef] [PubMed]
  8. Z. H. Kim, S. H. Ahn, B. Liu, and S. R. Leone, “Nanometer-scale dielectric imaging of semiconductor nanoparticles: Size-dependent dipolar coupling and contrast reversal,” Nano Lett.7(8), 2258–2262 (2007). [CrossRef] [PubMed]
  9. R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light matter interaction at the nanometre scale,” Nature418(6894), 159–162 (2002). [CrossRef] [PubMed]
  10. M. Brehm, T. Taubner, R. Hillenbrand, and F. Keilmann, “Infrared spectroscopic mapping of single nanoparticles and viruses at nanoscale resolution,” Nano Lett.6(7), 1307–1310 (2006). [CrossRef] [PubMed]
  11. J. M. Stiegler, Y. Abate, A. Cvitkovic, Y. E. Romanyuk, A. J. Huber, S. R. Leone, and R. Hillenbrand, “Nanoscale infrared absorption spectroscopy of individual nanoparticles enabled by scattering-type near-field microscopy,” ACS Nano5(8), 6494–6499 (2011). [CrossRef] [PubMed]
  12. R. Hillenbrand, F. Keilmann, P. Hanarp, D. S. Sutherland, and J. Aizpurua, “Coherent imaging of nanoscale plasmon patterns with a carbon nanotube optical probe,” Appl. Phys. Lett.83(2), 368–370 (2003). [CrossRef]
  13. R. Esteban, R. Vogelgesang, J. Dorfmüller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct near-field optical imaging of higher order plasmonic resonances,” Nano Lett.8(10), 3155–3159 (2008). [CrossRef] [PubMed]
  14. M. Rang, A. C. Jones, F. Zhou, Z. Y. Li, B. J. Wiley, Y. N. Xia, and M. B. Raschke, “Optical near-field mapping of plasmonic nanoprisms,” Nano Lett.8(10), 3357–3363 (2008). [CrossRef] [PubMed]
  15. D. S. Kim, J. Heo, S. H. Ahn, S. W. Han, W. S. Yun, and Z. H. Kim, “Real-space mapping of the strongly coupled plasmons of nanoparticle dimers,” Nano Lett.9(10), 3619–3625 (2009). [CrossRef] [PubMed]
  16. A. García-Etxarri, I. Romero, F. García de Abajo, R. Hillenbrand, and J. Aizpurua, “Influence of the tip in near-field imaging of nanoparticle plasmonic modes: Weak and strong coupling regimes,” Phys. Rev. B79(12), 125439 (2009). [CrossRef]
  17. P. Alonso-Gonzalez, M. Schnell, P. Sarriugarte, H. Sobhani, C. H. Wu, N. Arju, A. Khanikaev, F. Golmar, P. Albella, L. Arzubiaga, F. Casanova, L. E. Hueso, P. Nordlander, G. Shvets, and R. Hillenbrand, “Real-space mapping of Fano interference in plasmonic metamolecules,” Nano Lett.11(9), 3922–3926 (2011). [CrossRef] [PubMed]
  18. S. Mastel, S. E. Grefe, G. B. Cross, A. Taber, S. Dhuey, S. Cabrini, P. J. Schuck, and Y. Abate, “Real-space mapping of nanoplasmonic hotspots via optical antenna-gap loading,” Appl. Phys. Lett.101(13), 131102 (2012). [CrossRef]
  19. M. B. Raschke and C. Lienau, “Apertureless near-field optical microscopy: Tip-sample coupling in elastic light scattering,” Appl. Phys. Lett.83(24), 5089–5091 (2003). [CrossRef]
  20. O. J. F. Martin and C. Girard, “Controlling and tuning strong optical field gradients at a local probe microscope tip apex,” Appl. Phys. Lett.70(6), 705–707 (1997). [CrossRef]
  21. L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett.79(4), 645–648 (1997). [CrossRef]
  22. L. Aigouy, A. Lahrech, S. Grãsillon, H. Cory, A. C. Boccara, and J. C. Rivoal, “Polarization effects in apertureless scanning near-field optical microscopy: An experimental study,” Opt. Lett.24(4), 187–189 (1999). [CrossRef] [PubMed]
  23. A. Bouhelier and R. Bachelot, in Scanning Probe Microscopy, edited by S. Kalinin and A. Gruverman (Springer New York, 2007), 254–279.
  24. M. Schnell, A. Garcia-Etxarri, J. Alkorta, J. Aizpurua, and R. Hillenbrand, “Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps,” Nano Lett.10(9), 3524–3528 (2010). [CrossRef] [PubMed]
  25. D. S. Kim and Z. H. Kim, “Role of in-plane polarizability of the tip in scattering near-field microscopy of a plasmonic nanoparticle,” Opt. Express20(8), 8689–8699 (2012). [CrossRef] [PubMed]
  26. P. Alonso-González, P. Albella, F. Golmar, L. Arzubiaga, F. Casanova, L. E. Hueso, J. Aizpurua, and R. Hillenbrand, “Visualizing the near-field coupling and interference of bonding and anti-bonding modes in infrared dimer nanoantennas,” Opt. Express21(1), 1270–1280 (2013). [CrossRef] [PubMed]
  27. R. L. Olmon, P. M. Krenz, A. C. Jones, G. D. Boreman, and M. B. Raschke, “Near-field imaging of optical antenna modes in the mid-infrared,” Opt. Express16(25), 20295–20305 (2008). [CrossRef] [PubMed]
  28. E. J. Sànchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett.82(20), 4014–4017 (1999). [CrossRef]
  29. R. M. Stöckle, Y. D. Suh, V. Deckert, and R. Zenobi, “Nanoscale chemical analysis by tip-enhanced raman spectroscopy,” Chem. Phys. Lett.318(1-3), 131–136 (2000). [CrossRef]
  30. A. Hartschuh, E. J. Sánchez, X. S. Xie, and L. Novotny, “High-resolution near-field Raman microscopy of single-walled carbon nanotubes,” Phys. Rev. Lett.90(9), 095503 (2003). [CrossRef] [PubMed]
  31. W. H. Zhang, B. S. Yeo, T. Schmid, and R. Zenobi, “Single molecule tip-enhanced Raman spectroscopy with silver tips,” J. Phys. Chem. C111(4), 1733–1738 (2007). [CrossRef]
  32. J. Steidtner and B. Pettinger, “Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nm resolution,” Phys. Rev. Lett.100(23), 236101 (2008). [CrossRef] [PubMed]
  33. A. Weber-Bargioni, A. Schwartzberg, M. Cornaglia, A. Ismach, J. J. Urban, Y. J. Pang, R. Gordon, J. Bokor, M. B. Salmeron, D. F. Ogletree, P. Ashby, S. Cabrini, and P. J. Schuck, “Hyperspectral nanoscale imaging on dielectric substrates with coaxial optical antenna scan probes,” Nano Lett.11(3), 1201–1207 (2011). [CrossRef] [PubMed]
  34. N. Jiang, E. T. Foley, J. M. Klingsporn, M. D. Sonntag, N. A. Valley, J. A. Dieringer, T. Seideman, G. C. Schatz, M. C. Hersam, and R. P. Van Duyne, “Observation of multiple vibrational modes in ultrahigh vacuum tip-enhanced Raman spectroscopy combined with molecular-resolution scanning tunneling microscopy,” Nano Lett.12(10), 5061–5067 (2012). [CrossRef] [PubMed]
  35. N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett.89(10), 101124 (2006). [CrossRef]
  36. Z. H. Kim and S. R. Leone, “Polarization-selective mapping of near-field intensity and phase around gold nanoparticles using apertureless near-field microscopy,” Opt. Express16(3), 1733–1741 (2008). [CrossRef] [PubMed]
  37. E. D. Palik, Handbook of Optical Constants of Solids (Elsevier, 1998).
  38. T. G. Habteyes, S. Dhuey, E. Wood, D. Gargas, S. Cabrini, P. J. Schuck, A. P. Alivisatos, and S. R. Leone, “Metallic adhesion layer induced plasmon damping and molecular linker as a nondamping alternative,” ACS Nano6(6), 5702–5709 (2012). [CrossRef] [PubMed]
  39. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).
  40. P. B. Johnson and R. W. Christy, “Optical-constants of noble-metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  41. B. Deutsch, R. Hillenbrand, and L. Novotny, “Visualizing the optical interaction tensor of a gold nanoparticle pair,” Nano Lett.10(2), 652–656 (2010). [CrossRef] [PubMed]
  42. M. Esslinger and R. Vogelgesang, “Reciprocity theory of apertureless scanning near-field optical microscopy with point-dipole probes,” ACS Nano6(9), 8173–8182 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited